Loading…
A New Ferulic Acid–Nicotinamide Cocrystal With Improved Solubility and Dissolution Performance
Among the various strategies for increasing aqueous solubility of pharmaceutical substances, cocrystals have been emerging as a promising alternative. The ferulic acid (FEA) is a molecule with limited aqueous solubility, but with an interesting pharmacological activity, highlighting its antitumor po...
Saved in:
Published in: | Journal of pharmaceutical sciences 2020-03, Vol.109 (3), p.1330-1337 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Among the various strategies for increasing aqueous solubility of pharmaceutical substances, cocrystals have been emerging as a promising alternative. The ferulic acid (FEA) is a molecule with limited aqueous solubility, but with an interesting pharmacological activity, highlighting its antitumor potential. This study presents the characterization and physicochemical properties of a new cocrystal based on FEA and nicotinamide (NIC). The FEA-NIC cocrystal was obtained by solvent evaporation technique and physicochemically characterized by differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance and scanning electron microscopy. The content determination and dissolution profile in different media were analyzed by high-performance liquid chromatography. The results obtained with the characterization techniques indicated the obtainment of an anhydrous cocrystal of FEA and NIC at a 1:1 molar ratio. The method was reproducible and obtained a high yield, of approximately 99%. In addition, a 70% increase in the FEA solubility in the cocrystal and a better dissolution performance than the physical mixture in pH 6.8 were achieved. |
---|---|
ISSN: | 0022-3549 1520-6017 |
DOI: | 10.1016/j.xphs.2019.12.002 |