Loading…

Visible cellular distribution of cadmium and zinc in the hyperaccumulator Arabidopsis halleri ssp. gemmifera determined by 2-D X-ray fluorescence imaging using high-energy synchrotron radiation

The striking sub-cellular distribution of cadmium (Cd) and zinc (Zn) in the Cd and Zn hyperaccumulator Arabidopsis halleri ssp. gemmifera was revealed by microbeam X-ray microfluorescence analysis (μ-XRF) using high-energy synchrotron radiation. Plants were grown in hydroponics with various Cd and Z...

Full description

Saved in:
Bibliographic Details
Published in:Metallomics 2020-02, Vol.12 (2), p.193-203
Main Authors: Fukuda, Naoki, Kitajima, Nobuyuki, Terada, Yasuko, Abe, Tomoko, Nakai, Izumi, Hokura, Akiko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The striking sub-cellular distribution of cadmium (Cd) and zinc (Zn) in the Cd and Zn hyperaccumulator Arabidopsis halleri ssp. gemmifera was revealed by microbeam X-ray microfluorescence analysis (μ-XRF) using high-energy synchrotron radiation. Plants were grown in hydroponics with various Cd and Zn concentrations. The concentration of Cd in the aerial portions of the plants increased with increasing Zn exposure and the transportation efficiency of Cd from the root to the shoot was affected by both the Cd and Zn concentrations in the nutrient solution. The μ-XRF imaging clearly showed that Cd and Zn were preferentially accumulated in trichomes on the leaf, while the distribution of Cd in the leaf was changed by Zn treatment. It was observed that Cd treated with a higher Zn concentration (20 μM Cd + 100 μM Zn) was distributed in the mesophyll tissue at high concentrations. In addition, μ-XRF imaging clarified that the distribution of Zn inside the leaf was different from that of Cd at a cellular level. Zn was primarily distributed in the mesophyll tissue of the leaf blade. In contrast, Cd was localized in the vascular bundle of the main vein. That is, Zn was transported to mesophyll tissue from the vascular bundle more efficiently than Cd. As seen above, we were able to study the difference of the distribution of Cd and Zn, which are congeners and behave similarly, inside the plant body at the cellular level in detail by high-energy μ-XRF.
ISSN:1756-5901
1756-591X
DOI:10.1039/c9mt00243j