Loading…
Integrated Photonic Platform for Rare-Earth Ions in Thin Film Lithium Niobate
Rare-earth ion ensembles doped in single crystals are a promising materials system with widespread applications in optical signal processing, lasing, and quantum information processing. Incorporating rare-earth ions into integrated photonic devices could enable compact lasers and modulators, as well...
Saved in:
Published in: | Nano letters 2020-01, Vol.20 (1), p.741-747 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a348t-5e69592a151c5ed2a99fb8585d3bd596fc100412f34b8fb8ed2397ed57edf10d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a348t-5e69592a151c5ed2a99fb8585d3bd596fc100412f34b8fb8ed2397ed57edf10d3 |
container_end_page | 747 |
container_issue | 1 |
container_start_page | 741 |
container_title | Nano letters |
container_volume | 20 |
creator | Dutta, Subhojit Goldschmidt, Elizabeth A Barik, Sabyasachi Saha, Uday Waks, Edo |
description | Rare-earth ion ensembles doped in single crystals are a promising materials system with widespread applications in optical signal processing, lasing, and quantum information processing. Incorporating rare-earth ions into integrated photonic devices could enable compact lasers and modulators, as well as on-chip optical quantum memories for classical and quantum optical applications. To this end, a thin film single crystalline wafer structure that is compatible with planar fabrication of integrated photonic devices would be highly desirable. However, incorporating rare-earth ions into a thin film form-factor while preserving their optical properties has proven challenging. We demonstrate an integrated photonic platform for rare-earth ions doped in a single crystalline thin film lithium niobate on insulator. The thin film is composed of lithium niobate doped with Tm3+. The ions in the thin film exhibit optical lifetimes identical to those measured in bulk crystals. We show narrow spectral holes in a thin film waveguide that require up to 2 orders of magnitude lower power to generate than previously reported bulk waveguides. Our results pave the way for scalable on-chip lasers, optical signal processing devices, and integrated optical quantum memories. |
doi_str_mv | 10.1021/acs.nanolett.9b04679 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2329731898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329731898</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-5e69592a151c5ed2a99fb8585d3bd596fc100412f34b8fb8ed2397ed57edf10d3</originalsourceid><addsrcrecordid>eNp9kMFPwyAUxonRuDn9D4zh6KUTSunK0SybLpm6mHkmtAXL0sIEevC_l6Xbjh7eeyT8vu_lfQDcYzTFKMVPovJTI4xtZQhTVqIsn7ELMMaUoCRnLL08v4tsBG683yGEGKHoGowILijNCBmDt5UJ8tuJIGu4aWywRldw04qgrOtgbPBTOJkshAsNXFnjoTZw28S21G0H1zo0uu_gu7Zl9LgFV0q0Xt4d5wR8LRfb-Wuy_nhZzZ_XiSBZERIqc0ZZKjDFFZV1KhhTZUELWpOypixXFUYow6kiWVnEn4gQNpM1jaUwqskEPA6-e2d_eukD77SvZNsKI23veUpSNotHsiKi2YBWznrvpOJ7pzvhfjlG_BAkj0HyU5D8GGSUPRw39GUn67PolFwE0AAc5DvbOxMP_t_zD2I6gpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329731898</pqid></control><display><type>article</type><title>Integrated Photonic Platform for Rare-Earth Ions in Thin Film Lithium Niobate</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Dutta, Subhojit ; Goldschmidt, Elizabeth A ; Barik, Sabyasachi ; Saha, Uday ; Waks, Edo</creator><creatorcontrib>Dutta, Subhojit ; Goldschmidt, Elizabeth A ; Barik, Sabyasachi ; Saha, Uday ; Waks, Edo</creatorcontrib><description>Rare-earth ion ensembles doped in single crystals are a promising materials system with widespread applications in optical signal processing, lasing, and quantum information processing. Incorporating rare-earth ions into integrated photonic devices could enable compact lasers and modulators, as well as on-chip optical quantum memories for classical and quantum optical applications. To this end, a thin film single crystalline wafer structure that is compatible with planar fabrication of integrated photonic devices would be highly desirable. However, incorporating rare-earth ions into a thin film form-factor while preserving their optical properties has proven challenging. We demonstrate an integrated photonic platform for rare-earth ions doped in a single crystalline thin film lithium niobate on insulator. The thin film is composed of lithium niobate doped with Tm3+. The ions in the thin film exhibit optical lifetimes identical to those measured in bulk crystals. We show narrow spectral holes in a thin film waveguide that require up to 2 orders of magnitude lower power to generate than previously reported bulk waveguides. Our results pave the way for scalable on-chip lasers, optical signal processing devices, and integrated optical quantum memories.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b04679</identifier><identifier>PMID: 31855433</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Nano letters, 2020-01, Vol.20 (1), p.741-747</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-5e69592a151c5ed2a99fb8585d3bd596fc100412f34b8fb8ed2397ed57edf10d3</citedby><cites>FETCH-LOGICAL-a348t-5e69592a151c5ed2a99fb8585d3bd596fc100412f34b8fb8ed2397ed57edf10d3</cites><orcidid>0000-0003-0299-0784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31855433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Subhojit</creatorcontrib><creatorcontrib>Goldschmidt, Elizabeth A</creatorcontrib><creatorcontrib>Barik, Sabyasachi</creatorcontrib><creatorcontrib>Saha, Uday</creatorcontrib><creatorcontrib>Waks, Edo</creatorcontrib><title>Integrated Photonic Platform for Rare-Earth Ions in Thin Film Lithium Niobate</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Rare-earth ion ensembles doped in single crystals are a promising materials system with widespread applications in optical signal processing, lasing, and quantum information processing. Incorporating rare-earth ions into integrated photonic devices could enable compact lasers and modulators, as well as on-chip optical quantum memories for classical and quantum optical applications. To this end, a thin film single crystalline wafer structure that is compatible with planar fabrication of integrated photonic devices would be highly desirable. However, incorporating rare-earth ions into a thin film form-factor while preserving their optical properties has proven challenging. We demonstrate an integrated photonic platform for rare-earth ions doped in a single crystalline thin film lithium niobate on insulator. The thin film is composed of lithium niobate doped with Tm3+. The ions in the thin film exhibit optical lifetimes identical to those measured in bulk crystals. We show narrow spectral holes in a thin film waveguide that require up to 2 orders of magnitude lower power to generate than previously reported bulk waveguides. Our results pave the way for scalable on-chip lasers, optical signal processing devices, and integrated optical quantum memories.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFPwyAUxonRuDn9D4zh6KUTSunK0SybLpm6mHkmtAXL0sIEevC_l6Xbjh7eeyT8vu_lfQDcYzTFKMVPovJTI4xtZQhTVqIsn7ELMMaUoCRnLL08v4tsBG683yGEGKHoGowILijNCBmDt5UJ8tuJIGu4aWywRldw04qgrOtgbPBTOJkshAsNXFnjoTZw28S21G0H1zo0uu_gu7Zl9LgFV0q0Xt4d5wR8LRfb-Wuy_nhZzZ_XiSBZERIqc0ZZKjDFFZV1KhhTZUELWpOypixXFUYow6kiWVnEn4gQNpM1jaUwqskEPA6-e2d_eukD77SvZNsKI23veUpSNotHsiKi2YBWznrvpOJ7pzvhfjlG_BAkj0HyU5D8GGSUPRw39GUn67PolFwE0AAc5DvbOxMP_t_zD2I6gpM</recordid><startdate>20200108</startdate><enddate>20200108</enddate><creator>Dutta, Subhojit</creator><creator>Goldschmidt, Elizabeth A</creator><creator>Barik, Sabyasachi</creator><creator>Saha, Uday</creator><creator>Waks, Edo</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0299-0784</orcidid></search><sort><creationdate>20200108</creationdate><title>Integrated Photonic Platform for Rare-Earth Ions in Thin Film Lithium Niobate</title><author>Dutta, Subhojit ; Goldschmidt, Elizabeth A ; Barik, Sabyasachi ; Saha, Uday ; Waks, Edo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-5e69592a151c5ed2a99fb8585d3bd596fc100412f34b8fb8ed2397ed57edf10d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Subhojit</creatorcontrib><creatorcontrib>Goldschmidt, Elizabeth A</creatorcontrib><creatorcontrib>Barik, Sabyasachi</creatorcontrib><creatorcontrib>Saha, Uday</creatorcontrib><creatorcontrib>Waks, Edo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Subhojit</au><au>Goldschmidt, Elizabeth A</au><au>Barik, Sabyasachi</au><au>Saha, Uday</au><au>Waks, Edo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Photonic Platform for Rare-Earth Ions in Thin Film Lithium Niobate</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2020-01-08</date><risdate>2020</risdate><volume>20</volume><issue>1</issue><spage>741</spage><epage>747</epage><pages>741-747</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Rare-earth ion ensembles doped in single crystals are a promising materials system with widespread applications in optical signal processing, lasing, and quantum information processing. Incorporating rare-earth ions into integrated photonic devices could enable compact lasers and modulators, as well as on-chip optical quantum memories for classical and quantum optical applications. To this end, a thin film single crystalline wafer structure that is compatible with planar fabrication of integrated photonic devices would be highly desirable. However, incorporating rare-earth ions into a thin film form-factor while preserving their optical properties has proven challenging. We demonstrate an integrated photonic platform for rare-earth ions doped in a single crystalline thin film lithium niobate on insulator. The thin film is composed of lithium niobate doped with Tm3+. The ions in the thin film exhibit optical lifetimes identical to those measured in bulk crystals. We show narrow spectral holes in a thin film waveguide that require up to 2 orders of magnitude lower power to generate than previously reported bulk waveguides. Our results pave the way for scalable on-chip lasers, optical signal processing devices, and integrated optical quantum memories.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31855433</pmid><doi>10.1021/acs.nanolett.9b04679</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0299-0784</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2020-01, Vol.20 (1), p.741-747 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2329731898 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Integrated Photonic Platform for Rare-Earth Ions in Thin Film Lithium Niobate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A29%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Photonic%20Platform%20for%20Rare-Earth%20Ions%20in%20Thin%20Film%20Lithium%20Niobate&rft.jtitle=Nano%20letters&rft.au=Dutta,%20Subhojit&rft.date=2020-01-08&rft.volume=20&rft.issue=1&rft.spage=741&rft.epage=747&rft.pages=741-747&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b04679&rft_dat=%3Cproquest_cross%3E2329731898%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-5e69592a151c5ed2a99fb8585d3bd596fc100412f34b8fb8ed2397ed57edf10d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2329731898&rft_id=info:pmid/31855433&rfr_iscdi=true |