Loading…
Hexagonal Boron Nitride Synthesized at Atmospheric Pressure Using Metal Alloy Solvents: Evaluation as a Substrate for 2D Materials
Hexagonal boron nitride (h-BN) synthesized under high pressure and high temperature (HPHT) has been used worldwide in two-dimensional (2D) materials research as an essential material for constructing van der Waals heterostructures. Here, we study h-BN synthesized with another method, i.e., via synth...
Saved in:
Published in: | Nano letters 2020-01, Vol.20 (1), p.735-740 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hexagonal boron nitride (h-BN) synthesized under high pressure and high temperature (HPHT) has been used worldwide in two-dimensional (2D) materials research as an essential material for constructing van der Waals heterostructures. Here, we study h-BN synthesized with another method, i.e., via synthesis at atmospheric pressure and high temperature (APHT) using a metal alloy solvent. First, we examine the APHT h-BN in a bulk crystal form using cathodoluminescence and find that it does not have carbon-rich domains that inevitably exist in a core region of all the HPHT h-BN crystals. Next, we statistically compare the size of the crystal flakes exfoliated on a SiO2/Si substrate from APHT and HPHT h-BN crystals by employing our automated 2D material searching system. Finally, we provide direct evidence that APHT h-BN can serve as a high-quality substrate for 2D materials by demonstrating high carrier mobility, ballistic transport, and Hofstadter butterfly in graphene and photoluminescence in WS2. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.9b04641 |