Loading…

Quantum tunnelling pathways of the water pentamer

We apply the semiclassical instanton method to calculate all feasible tunnelling pathways in the water pentamer. Similarly to the water trimer, there are labile flip dynamics as well as a number of different bifurcation pathways coupled to flips. In contrast to the trimer, the puckering motion of th...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2020-01, Vol.22 (3), p.135-144
Main Authors: Cvitaš, Marko T, Richardson, Jeremy O
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093
cites cdi_FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093
container_end_page 144
container_issue 3
container_start_page 135
container_title Physical chemistry chemical physics : PCCP
container_volume 22
creator Cvitaš, Marko T
Richardson, Jeremy O
description We apply the semiclassical instanton method to calculate all feasible tunnelling pathways in the water pentamer. Similarly to the water trimer, there are labile flip dynamics as well as a number of different bifurcation pathways coupled to flips. In contrast to the trimer, the puckering motion of the oxygen ring makes the ring-polymer instanton approach difficult to converge, a problem which is resolved by using a recently developed time-independent formalism of the method. We use the results to predict the complete ground-state tunnelling splitting pattern of 320 states, which should help in the continuing effort to assign the experimental spectrum. A comparison between the rearrangement pathways in the water trimer and pentamer sheds light on the many-body cooperative effects of hydrogen bonding which are important for a full understanding of the liquid state. Five tunnelling rearrangement pathways in water pentamer are responsible for the ground-state tunnelling splitting pattern of 320 states.
doi_str_mv 10.1039/c9cp05561d
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2329738491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343007107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093</originalsourceid><addsrcrecordid>eNpd0UtLw0AQB_BFFFurF-9KwIsI0dlXsnuU-ISCCnoOm83GtjQP90Hptzc1tYKnHdgfM8N_EDrFcI2ByhstdQecJ7jcQ2PMEhpLEGx_V6fJCB05twAAzDE9RCOKBZeUiDHCb0E1PtSRD01jlst58xl1ys9Wau2itor8zEQr5Y2NOtN4VRt7jA4qtXTmZPtO0MfD_Xv2FE9fHp-z22msGcc-pkAElEAqXBCNy4oLklBChDK65FRRgFQSyYxICEt5UhSSs1Iz4IVICgqSTtDl0Lez7Vcwzuf13Ol-RdWYNricUCJTKpjEPb34RxdtsE2_Xa_YZhSGtFdXg9K2dc6aKu_svFZ2nWPIN0Hmmcxef4K86_H5tmUoalPu6G9yPTgbgHV69_t3CfoNMYx0vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343007107</pqid></control><display><type>article</type><title>Quantum tunnelling pathways of the water pentamer</title><source>Royal Society of Chemistry Journals</source><creator>Cvitaš, Marko T ; Richardson, Jeremy O</creator><creatorcontrib>Cvitaš, Marko T ; Richardson, Jeremy O</creatorcontrib><description>We apply the semiclassical instanton method to calculate all feasible tunnelling pathways in the water pentamer. Similarly to the water trimer, there are labile flip dynamics as well as a number of different bifurcation pathways coupled to flips. In contrast to the trimer, the puckering motion of the oxygen ring makes the ring-polymer instanton approach difficult to converge, a problem which is resolved by using a recently developed time-independent formalism of the method. We use the results to predict the complete ground-state tunnelling splitting pattern of 320 states, which should help in the continuing effort to assign the experimental spectrum. A comparison between the rearrangement pathways in the water trimer and pentamer sheds light on the many-body cooperative effects of hydrogen bonding which are important for a full understanding of the liquid state. Five tunnelling rearrangement pathways in water pentamer are responsible for the ground-state tunnelling splitting pattern of 320 states.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp05561d</identifier><identifier>PMID: 31859328</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bifurcations ; Hydrogen bonding ; Instantons ; Quantum tunnelling ; Trimers</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (3), p.135-144</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093</citedby><cites>FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093</cites><orcidid>0000-0001-5845-8311 ; 0000-0002-9429-151X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31859328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cvitaš, Marko T</creatorcontrib><creatorcontrib>Richardson, Jeremy O</creatorcontrib><title>Quantum tunnelling pathways of the water pentamer</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We apply the semiclassical instanton method to calculate all feasible tunnelling pathways in the water pentamer. Similarly to the water trimer, there are labile flip dynamics as well as a number of different bifurcation pathways coupled to flips. In contrast to the trimer, the puckering motion of the oxygen ring makes the ring-polymer instanton approach difficult to converge, a problem which is resolved by using a recently developed time-independent formalism of the method. We use the results to predict the complete ground-state tunnelling splitting pattern of 320 states, which should help in the continuing effort to assign the experimental spectrum. A comparison between the rearrangement pathways in the water trimer and pentamer sheds light on the many-body cooperative effects of hydrogen bonding which are important for a full understanding of the liquid state. Five tunnelling rearrangement pathways in water pentamer are responsible for the ground-state tunnelling splitting pattern of 320 states.</description><subject>Bifurcations</subject><subject>Hydrogen bonding</subject><subject>Instantons</subject><subject>Quantum tunnelling</subject><subject>Trimers</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLw0AQB_BFFFurF-9KwIsI0dlXsnuU-ISCCnoOm83GtjQP90Hptzc1tYKnHdgfM8N_EDrFcI2ByhstdQecJ7jcQ2PMEhpLEGx_V6fJCB05twAAzDE9RCOKBZeUiDHCb0E1PtSRD01jlst58xl1ys9Wau2itor8zEQr5Y2NOtN4VRt7jA4qtXTmZPtO0MfD_Xv2FE9fHp-z22msGcc-pkAElEAqXBCNy4oLklBChDK65FRRgFQSyYxICEt5UhSSs1Iz4IVICgqSTtDl0Lez7Vcwzuf13Ol-RdWYNricUCJTKpjEPb34RxdtsE2_Xa_YZhSGtFdXg9K2dc6aKu_svFZ2nWPIN0Hmmcxef4K86_H5tmUoalPu6G9yPTgbgHV69_t3CfoNMYx0vQ</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Cvitaš, Marko T</creator><creator>Richardson, Jeremy O</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5845-8311</orcidid><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid></search><sort><creationdate>20200121</creationdate><title>Quantum tunnelling pathways of the water pentamer</title><author>Cvitaš, Marko T ; Richardson, Jeremy O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bifurcations</topic><topic>Hydrogen bonding</topic><topic>Instantons</topic><topic>Quantum tunnelling</topic><topic>Trimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cvitaš, Marko T</creatorcontrib><creatorcontrib>Richardson, Jeremy O</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cvitaš, Marko T</au><au>Richardson, Jeremy O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum tunnelling pathways of the water pentamer</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2020-01-21</date><risdate>2020</risdate><volume>22</volume><issue>3</issue><spage>135</spage><epage>144</epage><pages>135-144</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We apply the semiclassical instanton method to calculate all feasible tunnelling pathways in the water pentamer. Similarly to the water trimer, there are labile flip dynamics as well as a number of different bifurcation pathways coupled to flips. In contrast to the trimer, the puckering motion of the oxygen ring makes the ring-polymer instanton approach difficult to converge, a problem which is resolved by using a recently developed time-independent formalism of the method. We use the results to predict the complete ground-state tunnelling splitting pattern of 320 states, which should help in the continuing effort to assign the experimental spectrum. A comparison between the rearrangement pathways in the water trimer and pentamer sheds light on the many-body cooperative effects of hydrogen bonding which are important for a full understanding of the liquid state. Five tunnelling rearrangement pathways in water pentamer are responsible for the ground-state tunnelling splitting pattern of 320 states.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31859328</pmid><doi>10.1039/c9cp05561d</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5845-8311</orcidid><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (3), p.135-144
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2329738491
source Royal Society of Chemistry Journals
subjects Bifurcations
Hydrogen bonding
Instantons
Quantum tunnelling
Trimers
title Quantum tunnelling pathways of the water pentamer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20tunnelling%20pathways%20of%20the%20water%20pentamer&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Cvita%C5%A1,%20Marko%20T&rft.date=2020-01-21&rft.volume=22&rft.issue=3&rft.spage=135&rft.epage=144&rft.pages=135-144&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp05561d&rft_dat=%3Cproquest_cross%3E2343007107%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343007107&rft_id=info:pmid/31859328&rfr_iscdi=true