Loading…
Quantum tunnelling pathways of the water pentamer
We apply the semiclassical instanton method to calculate all feasible tunnelling pathways in the water pentamer. Similarly to the water trimer, there are labile flip dynamics as well as a number of different bifurcation pathways coupled to flips. In contrast to the trimer, the puckering motion of th...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2020-01, Vol.22 (3), p.135-144 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093 |
container_end_page | 144 |
container_issue | 3 |
container_start_page | 135 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 22 |
creator | Cvitaš, Marko T Richardson, Jeremy O |
description | We apply the semiclassical instanton method to calculate all feasible tunnelling pathways in the water pentamer. Similarly to the water trimer, there are labile flip dynamics as well as a number of different bifurcation pathways coupled to flips. In contrast to the trimer, the puckering motion of the oxygen ring makes the ring-polymer instanton approach difficult to converge, a problem which is resolved by using a recently developed time-independent formalism of the method. We use the results to predict the complete ground-state tunnelling splitting pattern of 320 states, which should help in the continuing effort to assign the experimental spectrum. A comparison between the rearrangement pathways in the water trimer and pentamer sheds light on the many-body cooperative effects of hydrogen bonding which are important for a full understanding of the liquid state.
Five tunnelling rearrangement pathways in water pentamer are responsible for the ground-state tunnelling splitting pattern of 320 states. |
doi_str_mv | 10.1039/c9cp05561d |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2329738491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343007107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093</originalsourceid><addsrcrecordid>eNpd0UtLw0AQB_BFFFurF-9KwIsI0dlXsnuU-ISCCnoOm83GtjQP90Hptzc1tYKnHdgfM8N_EDrFcI2ByhstdQecJ7jcQ2PMEhpLEGx_V6fJCB05twAAzDE9RCOKBZeUiDHCb0E1PtSRD01jlst58xl1ys9Wau2itor8zEQr5Y2NOtN4VRt7jA4qtXTmZPtO0MfD_Xv2FE9fHp-z22msGcc-pkAElEAqXBCNy4oLklBChDK65FRRgFQSyYxICEt5UhSSs1Iz4IVICgqSTtDl0Lez7Vcwzuf13Ol-RdWYNricUCJTKpjEPb34RxdtsE2_Xa_YZhSGtFdXg9K2dc6aKu_svFZ2nWPIN0Hmmcxef4K86_H5tmUoalPu6G9yPTgbgHV69_t3CfoNMYx0vQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343007107</pqid></control><display><type>article</type><title>Quantum tunnelling pathways of the water pentamer</title><source>Royal Society of Chemistry Journals</source><creator>Cvitaš, Marko T ; Richardson, Jeremy O</creator><creatorcontrib>Cvitaš, Marko T ; Richardson, Jeremy O</creatorcontrib><description>We apply the semiclassical instanton method to calculate all feasible tunnelling pathways in the water pentamer. Similarly to the water trimer, there are labile flip dynamics as well as a number of different bifurcation pathways coupled to flips. In contrast to the trimer, the puckering motion of the oxygen ring makes the ring-polymer instanton approach difficult to converge, a problem which is resolved by using a recently developed time-independent formalism of the method. We use the results to predict the complete ground-state tunnelling splitting pattern of 320 states, which should help in the continuing effort to assign the experimental spectrum. A comparison between the rearrangement pathways in the water trimer and pentamer sheds light on the many-body cooperative effects of hydrogen bonding which are important for a full understanding of the liquid state.
Five tunnelling rearrangement pathways in water pentamer are responsible for the ground-state tunnelling splitting pattern of 320 states.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp05561d</identifier><identifier>PMID: 31859328</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Bifurcations ; Hydrogen bonding ; Instantons ; Quantum tunnelling ; Trimers</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (3), p.135-144</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093</citedby><cites>FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093</cites><orcidid>0000-0001-5845-8311 ; 0000-0002-9429-151X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31859328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cvitaš, Marko T</creatorcontrib><creatorcontrib>Richardson, Jeremy O</creatorcontrib><title>Quantum tunnelling pathways of the water pentamer</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We apply the semiclassical instanton method to calculate all feasible tunnelling pathways in the water pentamer. Similarly to the water trimer, there are labile flip dynamics as well as a number of different bifurcation pathways coupled to flips. In contrast to the trimer, the puckering motion of the oxygen ring makes the ring-polymer instanton approach difficult to converge, a problem which is resolved by using a recently developed time-independent formalism of the method. We use the results to predict the complete ground-state tunnelling splitting pattern of 320 states, which should help in the continuing effort to assign the experimental spectrum. A comparison between the rearrangement pathways in the water trimer and pentamer sheds light on the many-body cooperative effects of hydrogen bonding which are important for a full understanding of the liquid state.
Five tunnelling rearrangement pathways in water pentamer are responsible for the ground-state tunnelling splitting pattern of 320 states.</description><subject>Bifurcations</subject><subject>Hydrogen bonding</subject><subject>Instantons</subject><subject>Quantum tunnelling</subject><subject>Trimers</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0UtLw0AQB_BFFFurF-9KwIsI0dlXsnuU-ISCCnoOm83GtjQP90Hptzc1tYKnHdgfM8N_EDrFcI2ByhstdQecJ7jcQ2PMEhpLEGx_V6fJCB05twAAzDE9RCOKBZeUiDHCb0E1PtSRD01jlst58xl1ys9Wau2itor8zEQr5Y2NOtN4VRt7jA4qtXTmZPtO0MfD_Xv2FE9fHp-z22msGcc-pkAElEAqXBCNy4oLklBChDK65FRRgFQSyYxICEt5UhSSs1Iz4IVICgqSTtDl0Lez7Vcwzuf13Ol-RdWYNricUCJTKpjEPb34RxdtsE2_Xa_YZhSGtFdXg9K2dc6aKu_svFZ2nWPIN0Hmmcxef4K86_H5tmUoalPu6G9yPTgbgHV69_t3CfoNMYx0vQ</recordid><startdate>20200121</startdate><enddate>20200121</enddate><creator>Cvitaš, Marko T</creator><creator>Richardson, Jeremy O</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5845-8311</orcidid><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid></search><sort><creationdate>20200121</creationdate><title>Quantum tunnelling pathways of the water pentamer</title><author>Cvitaš, Marko T ; Richardson, Jeremy O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bifurcations</topic><topic>Hydrogen bonding</topic><topic>Instantons</topic><topic>Quantum tunnelling</topic><topic>Trimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cvitaš, Marko T</creatorcontrib><creatorcontrib>Richardson, Jeremy O</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cvitaš, Marko T</au><au>Richardson, Jeremy O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum tunnelling pathways of the water pentamer</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2020-01-21</date><risdate>2020</risdate><volume>22</volume><issue>3</issue><spage>135</spage><epage>144</epage><pages>135-144</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We apply the semiclassical instanton method to calculate all feasible tunnelling pathways in the water pentamer. Similarly to the water trimer, there are labile flip dynamics as well as a number of different bifurcation pathways coupled to flips. In contrast to the trimer, the puckering motion of the oxygen ring makes the ring-polymer instanton approach difficult to converge, a problem which is resolved by using a recently developed time-independent formalism of the method. We use the results to predict the complete ground-state tunnelling splitting pattern of 320 states, which should help in the continuing effort to assign the experimental spectrum. A comparison between the rearrangement pathways in the water trimer and pentamer sheds light on the many-body cooperative effects of hydrogen bonding which are important for a full understanding of the liquid state.
Five tunnelling rearrangement pathways in water pentamer are responsible for the ground-state tunnelling splitting pattern of 320 states.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31859328</pmid><doi>10.1039/c9cp05561d</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5845-8311</orcidid><orcidid>https://orcid.org/0000-0002-9429-151X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (3), p.135-144 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2329738491 |
source | Royal Society of Chemistry Journals |
subjects | Bifurcations Hydrogen bonding Instantons Quantum tunnelling Trimers |
title | Quantum tunnelling pathways of the water pentamer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20tunnelling%20pathways%20of%20the%20water%20pentamer&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Cvita%C5%A1,%20Marko%20T&rft.date=2020-01-21&rft.volume=22&rft.issue=3&rft.spage=135&rft.epage=144&rft.pages=135-144&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp05561d&rft_dat=%3Cproquest_cross%3E2343007107%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-30280d02f1b2c1df58263228aecd53a30079294e8624756bb954dc405b86b3093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343007107&rft_id=info:pmid/31859328&rfr_iscdi=true |