Loading…

Tetrasomy 21 pter→q21.3 due to an extra +dic(21;21)mat in a severely psychomotor-retarded female patient without Down syndrome phenotype

Complete or partial tetrasomy 21 has been reported only in rare cases. We report a Japanese female patient with tetrasomy 21 due to an extra chromosome derived from chromosome 21 (Chr21). The patient had severe psychomotor retardation without Down syndrome (DS) phenotype; she showed short stature, m...

Full description

Saved in:
Bibliographic Details
Published in:European journal of medical genetics 2020-04, Vol.63 (4), p.103824-103824, Article 103824
Main Authors: Takano, Takako, Nakabayashi, Kazuhiko, Ota, Hideomi, Arai, Yasuhiro, Kamura, Hiromi, Hata, Kenichiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Complete or partial tetrasomy 21 has been reported only in rare cases. We report a Japanese female patient with tetrasomy 21 due to an extra chromosome derived from chromosome 21 (Chr21). The patient had severe psychomotor retardation without Down syndrome (DS) phenotype; she showed short stature, microcephaly, round face, cleft lip and palate, and other dysmorphic features. The chromosome analyses for the patient detected an extra dicentric Chr21 consisting of two partial Chr21 copies fused together within their long arms. Her karyotype was revealed to be 47,XX,+dic(21;21). Allelic ratios of heterozygous SNPs observed in the patient indicated the maternal origin of the extra Chr21. Copy number and structural variant analyses using whole genome sequencing data indicated that the distal breakpoint of the dicentric Chr21 was located within 21q21.3 and that the extra Chr21 did not simply consist of inverted duplications of the pter→q21.3 region, but likely contained multiple partial deletions, duplications, and inversions within it. Fluorescence in situ hybridization results were consistent with the karyotype and genomic analyses. The patient's lack of DS phenotype turned out to be due to the normal copy number of the DS critical region (21q22.13–22.3). A possible molecular mechanism leading to the complex genomic rearrangements in the tetrasomic region consists mainly of breakage-fusion-bridge cycles with an unequal crossing-over event.
ISSN:1769-7212
1878-0849
DOI:10.1016/j.ejmg.2019.103824