Loading…
Response of FANIR system to starvation stress: “Dormancy”
Anaerobic ammonium oxidation (Anammox) process has been successfully applied in the nitrogen removal from high-strength wastewaters. However, little information is available for its treatment of low-strength wastewaters. In this study, a Famine Anammox NItrogen Removal (FANIR) system was developed t...
Saved in:
Published in: | Water research (Oxford) 2020-03, Vol.171, p.115380-115380, Article 115380 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Anaerobic ammonium oxidation (Anammox) process has been successfully applied in the nitrogen removal from high-strength wastewaters. However, little information is available for its treatment of low-strength wastewaters. In this study, a Famine Anammox NItrogen Removal (FANIR) system was developed to investigate the effect of long-term substrate starvation at the low nitrogen concentration (the influent total nitrogen was set at ∼1 mg/L). The results showed that the response of FANIR system to the starvation stress took on two phases: the functional decline phase (0–54 day) and the functional stabilization phase (62–116 day). Over the two phases, the Nitrogen Removal Rate (NRR) of anammox reactor firstly dropped sharply; and then came to a constant level. The activity and settleability of Anammox Granular Sludge (AnGS) firstly deteriorated seriously, and then stayed in a stable range. The relative abundance of Anaerobic Ammonium Oxidation Bacteria (AnAOB) firstly decreased markedly, and then approached a steady state with the change of dominant genus from Candidatus Brocadia to Candidatus Kuenenia. The abundance of 16S rRNA gene and hzs gene of AnAOB and their transcription level firstly declined largely as well, and then became stable with the 16S rRNA gene, hzs gene, 16S rRNA and hzs-mRNA of AnAOB at 23.9%, 9.1%, 1.2% and 1.0% of the initial value, respectively. To our delight, the behavior of FANIR system in the functional stabilization phase was proved indeed consistent with the feature for AnAOB to enter the dormancy state. These findings are helpful to understand the physiology of AnAOB over the starvation stress and to promote the extension of anammox process to the treatment of low-strength wastewaters.
[Display omitted]
•Nitrogen removal capacity of FANIR system first dropped sharply, then stayed stable over the starvation.•Performance of AnGS fell to a low but stable level over the starvation.•Microbial community and metabolic activity changed greatly to a different but stable state over the starvation.•Dormancy was found responsible for the deterioration but maintenance of anammox activity over the starvation. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/j.watres.2019.115380 |