Loading…
Inhomogeneous cooling state of a strongly confined granular gas at low density
The inhomogeneous cooling state describing the hydrodynamic behavior of a freely evolving granular gas strongly confined between two parallel plates is studied, using a Boltzmann kinetic equation derived recently. By extending the idea of the homogeneous cooling state, we propose a scaling distribut...
Saved in:
Published in: | Physical review. E 2019-11, Vol.100 (5-1), p.052901-052901, Article 052901 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The inhomogeneous cooling state describing the hydrodynamic behavior of a freely evolving granular gas strongly confined between two parallel plates is studied, using a Boltzmann kinetic equation derived recently. By extending the idea of the homogeneous cooling state, we propose a scaling distribution in which all the time dependence occurs through the granular temperature of the system, while there is a dependence on the distance to the confining walls through the density. It is obtained that the velocity distribution is not isotropic, and it has two different granular temperature parameters associated to the motion perpendicular and parallel to the confining plates, respectively, although their cooling rates are the same. Moreover, when approaching the inhomogeneous cooling state, energy is sometimes transferred from degrees of freedom with lower granular temperature to those with a higher one, contrary to what happens in molecular systems. The cooling rate and the two partial granular temperatures are calculated by means of a Gaussian approximation. The theoretical predictions are compared with molecular dynamics simulation results and a good agreement is found. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.100.052901 |