Loading…

Fingerprint Identification With Shallow Multifeature View Classifier

This article presents an efficient fingerprint identification system that implements an initial classification for search-space reduction followed by minutiae neighbor-based feature encoding and matching. The current state-of-the-art fingerprint classification methods use a deep convolutional neural...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics 2021-09, Vol.51 (9), p.4515-4527
Main Authors: Ghafoor, Mubeen, Tariq, Syed Ali, Zia, Tehseen, Taj, Imtiaz Ahmad, Abbas, Assad, Hassan, Ali, Zomaya, Albert Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-dde369f04b99f02640f58188e7cedf0f80fd5e28efe3acc7fae56e135d930ebb3
cites cdi_FETCH-LOGICAL-c349t-dde369f04b99f02640f58188e7cedf0f80fd5e28efe3acc7fae56e135d930ebb3
container_end_page 4527
container_issue 9
container_start_page 4515
container_title IEEE transactions on cybernetics
container_volume 51
creator Ghafoor, Mubeen
Tariq, Syed Ali
Zia, Tehseen
Taj, Imtiaz Ahmad
Abbas, Assad
Hassan, Ali
Zomaya, Albert Y.
description This article presents an efficient fingerprint identification system that implements an initial classification for search-space reduction followed by minutiae neighbor-based feature encoding and matching. The current state-of-the-art fingerprint classification methods use a deep convolutional neural network (DCNN) to assign confidence for the classification prediction, and based on this prediction, the input fingerprint is matched with only the subset of the database that belongs to the predicted class. It can be observed for the DCNNs that as the architectures deepen, the farthest layers of the network learn more abstract information from the input images that result in higher prediction accuracies. However, the downside is that the DCNNs are data hungry and require lots of annotated (labeled) data to learn generalized network parameters for deeper layers. In this article, a shallow multifeature view CNN (SMV-CNN) fingerprint classifier is proposed that extracts: 1) fine-grained features from the input image and 2) abstract features from explicitly derived representations obtained from the input image. The multifeature views are fed to a fully connected neural network (NN) to compute a global classification prediction. The classification results show that the SMV-CNN demonstrated an improvement of 2.8% when compared to baseline CNN consisting of a single grayscale view on an open-source database. Moreover, in comparison with the state-of-the-art residual network (ResNet-50) image classification model, the proposed method performs comparably while being less complex and more efficient during training. The result of classification-based fingerprint identification has shown that the search space is reduced by over 50% without degradation of identification accuracies.
doi_str_mv 10.1109/TCYB.2019.2957188
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2331250081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8941056</ieee_id><sourcerecordid>2572664075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-dde369f04b99f02640f58188e7cedf0f80fd5e28efe3acc7fae56e135d930ebb3</originalsourceid><addsrcrecordid>eNpdkM9LwzAUgIMobsz9ASJIwYuXzfxo2uSo1elg4sGpeApp--IyunYmLcP_3ozNHcwheeR97-XlQ-ic4DEhWN7Ms8-7McVEjqnkKRHiCPUpScSI0pQfH-Ik7aGh90sclghXUpyiHgs45qnso_uJrb_ArZ2t22haQt1aYwvd2qaOPmy7iF4XuqqaTfTcVSEFuu0cRO8WNlFWae8DDe4MnRhdeRjuzwF6mzzMs6fR7OVxmt3ORgWLZTsqS2CJNDjOZdhpEmPDRZgE0gJKg43ApuRABRhguihSo4EnQBgvJcOQ52yArnd916757sC3amV9AVWla2g6ryhjhPLtPwN69Q9dNp2rw3SK8pQm4fGUB4rsqMI13jswKohYafejCFZby2prWW0tq73lUHO579zlKygPFX9OA3CxAywAHNJCxgTzhP0CdNeAxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572664075</pqid></control><display><type>article</type><title>Fingerprint Identification With Shallow Multifeature View Classifier</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ghafoor, Mubeen ; Tariq, Syed Ali ; Zia, Tehseen ; Taj, Imtiaz Ahmad ; Abbas, Assad ; Hassan, Ali ; Zomaya, Albert Y.</creator><creatorcontrib>Ghafoor, Mubeen ; Tariq, Syed Ali ; Zia, Tehseen ; Taj, Imtiaz Ahmad ; Abbas, Assad ; Hassan, Ali ; Zomaya, Albert Y.</creatorcontrib><description>This article presents an efficient fingerprint identification system that implements an initial classification for search-space reduction followed by minutiae neighbor-based feature encoding and matching. The current state-of-the-art fingerprint classification methods use a deep convolutional neural network (DCNN) to assign confidence for the classification prediction, and based on this prediction, the input fingerprint is matched with only the subset of the database that belongs to the predicted class. It can be observed for the DCNNs that as the architectures deepen, the farthest layers of the network learn more abstract information from the input images that result in higher prediction accuracies. However, the downside is that the DCNNs are data hungry and require lots of annotated (labeled) data to learn generalized network parameters for deeper layers. In this article, a shallow multifeature view CNN (SMV-CNN) fingerprint classifier is proposed that extracts: 1) fine-grained features from the input image and 2) abstract features from explicitly derived representations obtained from the input image. The multifeature views are fed to a fully connected neural network (NN) to compute a global classification prediction. The classification results show that the SMV-CNN demonstrated an improvement of 2.8% when compared to baseline CNN consisting of a single grayscale view on an open-source database. Moreover, in comparison with the state-of-the-art residual network (ResNet-50) image classification model, the proposed method performs comparably while being less complex and more efficient during training. The result of classification-based fingerprint identification has shown that the search space is reduced by over 50% without degradation of identification accuracies.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2019.2957188</identifier><identifier>PMID: 31880579</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Classification ; Classifiers ; CNN ; Computer architecture ; Cybernetics ; deep learning (DL) ; Encoding ; Feature extraction ; fingerprint identification ; Fingerprint recognition ; Fingerprinting ; Fingerprints ; Image classification ; Neural networks</subject><ispartof>IEEE transactions on cybernetics, 2021-09, Vol.51 (9), p.4515-4527</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-dde369f04b99f02640f58188e7cedf0f80fd5e28efe3acc7fae56e135d930ebb3</citedby><cites>FETCH-LOGICAL-c349t-dde369f04b99f02640f58188e7cedf0f80fd5e28efe3acc7fae56e135d930ebb3</cites><orcidid>0000-0002-1604-8805 ; 0000-0002-3090-1059 ; 0000-0001-8176-3373 ; 0000-0002-4233-053X ; 0000-0003-1667-7166 ; 0000-0002-5314-8557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8941056$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31880579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghafoor, Mubeen</creatorcontrib><creatorcontrib>Tariq, Syed Ali</creatorcontrib><creatorcontrib>Zia, Tehseen</creatorcontrib><creatorcontrib>Taj, Imtiaz Ahmad</creatorcontrib><creatorcontrib>Abbas, Assad</creatorcontrib><creatorcontrib>Hassan, Ali</creatorcontrib><creatorcontrib>Zomaya, Albert Y.</creatorcontrib><title>Fingerprint Identification With Shallow Multifeature View Classifier</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>This article presents an efficient fingerprint identification system that implements an initial classification for search-space reduction followed by minutiae neighbor-based feature encoding and matching. The current state-of-the-art fingerprint classification methods use a deep convolutional neural network (DCNN) to assign confidence for the classification prediction, and based on this prediction, the input fingerprint is matched with only the subset of the database that belongs to the predicted class. It can be observed for the DCNNs that as the architectures deepen, the farthest layers of the network learn more abstract information from the input images that result in higher prediction accuracies. However, the downside is that the DCNNs are data hungry and require lots of annotated (labeled) data to learn generalized network parameters for deeper layers. In this article, a shallow multifeature view CNN (SMV-CNN) fingerprint classifier is proposed that extracts: 1) fine-grained features from the input image and 2) abstract features from explicitly derived representations obtained from the input image. The multifeature views are fed to a fully connected neural network (NN) to compute a global classification prediction. The classification results show that the SMV-CNN demonstrated an improvement of 2.8% when compared to baseline CNN consisting of a single grayscale view on an open-source database. Moreover, in comparison with the state-of-the-art residual network (ResNet-50) image classification model, the proposed method performs comparably while being less complex and more efficient during training. The result of classification-based fingerprint identification has shown that the search space is reduced by over 50% without degradation of identification accuracies.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Classifiers</subject><subject>CNN</subject><subject>Computer architecture</subject><subject>Cybernetics</subject><subject>deep learning (DL)</subject><subject>Encoding</subject><subject>Feature extraction</subject><subject>fingerprint identification</subject><subject>Fingerprint recognition</subject><subject>Fingerprinting</subject><subject>Fingerprints</subject><subject>Image classification</subject><subject>Neural networks</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAUgIMobsz9ASJIwYuXzfxo2uSo1elg4sGpeApp--IyunYmLcP_3ozNHcwheeR97-XlQ-ic4DEhWN7Ms8-7McVEjqnkKRHiCPUpScSI0pQfH-Ik7aGh90sclghXUpyiHgs45qnso_uJrb_ArZ2t22haQt1aYwvd2qaOPmy7iF4XuqqaTfTcVSEFuu0cRO8WNlFWae8DDe4MnRhdeRjuzwF6mzzMs6fR7OVxmt3ORgWLZTsqS2CJNDjOZdhpEmPDRZgE0gJKg43ApuRABRhguihSo4EnQBgvJcOQ52yArnd916757sC3amV9AVWla2g6ryhjhPLtPwN69Q9dNp2rw3SK8pQm4fGUB4rsqMI13jswKohYafejCFZby2prWW0tq73lUHO579zlKygPFX9OA3CxAywAHNJCxgTzhP0CdNeAxw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ghafoor, Mubeen</creator><creator>Tariq, Syed Ali</creator><creator>Zia, Tehseen</creator><creator>Taj, Imtiaz Ahmad</creator><creator>Abbas, Assad</creator><creator>Hassan, Ali</creator><creator>Zomaya, Albert Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1604-8805</orcidid><orcidid>https://orcid.org/0000-0002-3090-1059</orcidid><orcidid>https://orcid.org/0000-0001-8176-3373</orcidid><orcidid>https://orcid.org/0000-0002-4233-053X</orcidid><orcidid>https://orcid.org/0000-0003-1667-7166</orcidid><orcidid>https://orcid.org/0000-0002-5314-8557</orcidid></search><sort><creationdate>20210901</creationdate><title>Fingerprint Identification With Shallow Multifeature View Classifier</title><author>Ghafoor, Mubeen ; Tariq, Syed Ali ; Zia, Tehseen ; Taj, Imtiaz Ahmad ; Abbas, Assad ; Hassan, Ali ; Zomaya, Albert Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-dde369f04b99f02640f58188e7cedf0f80fd5e28efe3acc7fae56e135d930ebb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Classifiers</topic><topic>CNN</topic><topic>Computer architecture</topic><topic>Cybernetics</topic><topic>deep learning (DL)</topic><topic>Encoding</topic><topic>Feature extraction</topic><topic>fingerprint identification</topic><topic>Fingerprint recognition</topic><topic>Fingerprinting</topic><topic>Fingerprints</topic><topic>Image classification</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghafoor, Mubeen</creatorcontrib><creatorcontrib>Tariq, Syed Ali</creatorcontrib><creatorcontrib>Zia, Tehseen</creatorcontrib><creatorcontrib>Taj, Imtiaz Ahmad</creatorcontrib><creatorcontrib>Abbas, Assad</creatorcontrib><creatorcontrib>Hassan, Ali</creatorcontrib><creatorcontrib>Zomaya, Albert Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghafoor, Mubeen</au><au>Tariq, Syed Ali</au><au>Zia, Tehseen</au><au>Taj, Imtiaz Ahmad</au><au>Abbas, Assad</au><au>Hassan, Ali</au><au>Zomaya, Albert Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fingerprint Identification With Shallow Multifeature View Classifier</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>51</volume><issue>9</issue><spage>4515</spage><epage>4527</epage><pages>4515-4527</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>This article presents an efficient fingerprint identification system that implements an initial classification for search-space reduction followed by minutiae neighbor-based feature encoding and matching. The current state-of-the-art fingerprint classification methods use a deep convolutional neural network (DCNN) to assign confidence for the classification prediction, and based on this prediction, the input fingerprint is matched with only the subset of the database that belongs to the predicted class. It can be observed for the DCNNs that as the architectures deepen, the farthest layers of the network learn more abstract information from the input images that result in higher prediction accuracies. However, the downside is that the DCNNs are data hungry and require lots of annotated (labeled) data to learn generalized network parameters for deeper layers. In this article, a shallow multifeature view CNN (SMV-CNN) fingerprint classifier is proposed that extracts: 1) fine-grained features from the input image and 2) abstract features from explicitly derived representations obtained from the input image. The multifeature views are fed to a fully connected neural network (NN) to compute a global classification prediction. The classification results show that the SMV-CNN demonstrated an improvement of 2.8% when compared to baseline CNN consisting of a single grayscale view on an open-source database. Moreover, in comparison with the state-of-the-art residual network (ResNet-50) image classification model, the proposed method performs comparably while being less complex and more efficient during training. The result of classification-based fingerprint identification has shown that the search space is reduced by over 50% without degradation of identification accuracies.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31880579</pmid><doi>10.1109/TCYB.2019.2957188</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1604-8805</orcidid><orcidid>https://orcid.org/0000-0002-3090-1059</orcidid><orcidid>https://orcid.org/0000-0001-8176-3373</orcidid><orcidid>https://orcid.org/0000-0002-4233-053X</orcidid><orcidid>https://orcid.org/0000-0003-1667-7166</orcidid><orcidid>https://orcid.org/0000-0002-5314-8557</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2021-09, Vol.51 (9), p.4515-4527
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_miscellaneous_2331250081
source IEEE Electronic Library (IEL) Journals
subjects Accuracy
Artificial neural networks
Classification
Classifiers
CNN
Computer architecture
Cybernetics
deep learning (DL)
Encoding
Feature extraction
fingerprint identification
Fingerprint recognition
Fingerprinting
Fingerprints
Image classification
Neural networks
title Fingerprint Identification With Shallow Multifeature View Classifier
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fingerprint%20Identification%20With%20Shallow%20Multifeature%20View%20Classifier&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Ghafoor,%20Mubeen&rft.date=2021-09-01&rft.volume=51&rft.issue=9&rft.spage=4515&rft.epage=4527&rft.pages=4515-4527&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2019.2957188&rft_dat=%3Cproquest_ieee_%3E2572664075%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-dde369f04b99f02640f58188e7cedf0f80fd5e28efe3acc7fae56e135d930ebb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572664075&rft_id=info:pmid/31880579&rft_ieee_id=8941056&rfr_iscdi=true