Loading…
Fluorine-Free Waterborne Coating for Environmentally Friendly, Robustly Water-Resistant, and Highly Breathable Fibrous Textiles
Waterproof and breathable membranes (WBMs) with simultaneous environmental friendliness and high performance are highly desirable in a broad range of applications; however, creating such materials still remains a tough challenge. Herein, we present a facile and scalable strategy to fabricate fluorin...
Saved in:
Published in: | ACS nano 2020-01, Vol.14 (1), p.1045-1054 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Waterproof and breathable membranes (WBMs) with simultaneous environmental friendliness and high performance are highly desirable in a broad range of applications; however, creating such materials still remains a tough challenge. Herein, we present a facile and scalable strategy to fabricate fluorine-free, efficient, and biodegradable WBMs via step-by-step dip-coating and heat curing technology. The hyperbranched polymer (ECO) coating containing long hydrocarbon chains provided an electrospun cellulose acetate (CA) fibrous matrix with high hydrophobicity; meanwhile, the blocked isocyanate cross-linker (BIC) coating ensured the strong attachment of hydrocarbon segments on CA surfaces. The resulting membranes (TCA) exhibited integrated properties with waterproofness of 102.9 kPa, breathability of 12.3 kg m–2 d–1, and tensile strength of 16.0 MPa, which are much superior to that of previously reported fluorine-free fibrous materials. Furthermore, TCA membranes can sustain hydrophobicity after exposure to various harsh environments. More importantly, the present strategy proved to be universally applicable and effective to several other hydrophilic fibrous substrates. This work not only highlights the material design and preparation but also provides environmentally friendly and high-performance WBMs with great potential application prospects for a variety of fields. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.9b08595 |