Loading…
Comparison of three focus sensors for optical topography measurement of rough surfaces
The study compares three variants of focus sensors designed for the optical topography measurement of rough surface specimens with submicron accuracy. We present a theoretical analysis of the focus sensor principles and the experimental measurements with a single point laser probe. A low coherent il...
Saved in:
Published in: | Optics express 2019-11, Vol.27 (23), p.33459-33473 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The study compares three variants of focus sensors designed for the optical topography measurement of rough surface specimens with submicron accuracy. We present a theoretical analysis of the focus sensor principles and the experimental measurements with a single point laser probe. A low coherent illumination beam was provided by a monochromatic laser source and a rotating diffuser, which reduced the speckles generated by the rough surface. The reflected beam was modulated by three specific optical elements (axicon, double wedge prism, four spherical lenses) realized by a spatial light modulator. A digital camera detected the output intensity patterns that were evaluated by the intensity centroid method. The results showed a good coincidence of the surface profiles obtained by the three sensor variants with the root-mean-square deviations below one micron. We discuss the results obtained for several specimens with various surface roughness and compare the differences between the three focus sensor variants. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.27.033459 |