Loading…
MiR-27b suppresses epithelial–mesenchymal transition and chemoresistance in lung cancer by targeting Snail1
MicroRNA-27b (miR-27b) has been shown to play a role in the progression of many different forms of cancer, but its specific relevance in the context of non-small cell lung cancer (NSCLC) remains uncertain. As such, this study sought to explore the role of miR-27b in NSCLC and the mechanisms whereby...
Saved in:
Published in: | Life sciences (1973) 2020-08, Vol.254, p.117238-7, Article 117238 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | MicroRNA-27b (miR-27b) has been shown to play a role in the progression of many different forms of cancer, but its specific relevance in the context of non-small cell lung cancer (NSCLC) remains uncertain. As such, this study sought to explore the role of miR-27b in NSCLC and the mechanisms whereby it functions.
We quantified miR-27b and target gene expression via quantitative real-time PCR (RT-qPCR).We then used functional including proliferation assays, migration assay, flow cytometry, and western blotting to explore the mechanisms whereby miR-27b functions in vitro and in vivo. We additionally confirmed miR-27b target genes via luciferase reporter assay.
We observed a marked decrease in miR-27b expression in NSCLC patient samples relative to paracancerous control tissues. We further found that altering miR-27b expression levels in vitro affected NSCLC tumor cell migration, proliferation, and ability to undergo epithelial-mesenchymal transition. Through the use of target prediction algorithms we identified Snail to be a miR-27b target protein that was suppressed when this miRNA was highlight expressed. Lastly, we found miR-27b expression to increase NSCLC cell sensitivity to cisplatin through its ability to target Snail.
Our results clearly demonstrate that miR-27b can suppress NSCLC tumor development and progression, highlighting this miR-27b/Snail1 axis as putative target for the therapeutic treatment of NSCLC. |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2019.117238 |