Loading…

Ketamine inhibits synaptic transmission and nicotinic acetylcholine receptor-mediated responses in rat intracardiac ganglia in situ

The intravenous anaesthetic ketamine, has been demonstrated to inhibit nicotinic acetylcholine receptor (nAChR)-mediated currents in dissociated rat intracardiac ganglion (ICG) neurons (Weber et al., 2005). This effect would be predicted to depress synaptic transmission in the ICG and would account...

Full description

Saved in:
Bibliographic Details
Published in:Neuropharmacology 2020-03, Vol.165, p.107932-107932, Article 107932
Main Authors: Harper, Alexander A., Rimmer, Katrina, Dyavanapalli, Jhansi, McArthur, Jeffrey R., Adams, David J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The intravenous anaesthetic ketamine, has been demonstrated to inhibit nicotinic acetylcholine receptor (nAChR)-mediated currents in dissociated rat intracardiac ganglion (ICG) neurons (Weber et al., 2005). This effect would be predicted to depress synaptic transmission in the ICG and would account for the inhibitory action of ketamine on vagal transmission to the heart (Inoue and König, 1988). This investigation was designed to examine the activity of ketamine on (i) postsynaptic responses to vagal nerve stimulation, (ii) the membrane potential, and (iii) membrane current responses evoked by exogenous application of ACh and nicotine in ICG neurons in situ. Intracellular recordings were made using sharp intracellular microelectrodes in a whole mount ICG preparation. Preganglionic nerve stimulation and recordings in current- and voltage-clamp modes were used to assess the action of ketamine on ganglionic transmission and nAChR-mediated responses. Ketamine attenuated the postsynaptic responses evoked by nerve stimulation. This reduction was significant at clinically relevant concentrations at high frequencies. The excitatory membrane potential and current responses to focal application of ACh and nicotine were inhibited in a concentration-dependent manner by ketamine. In contrast, ketamine had no effect on either the directly-evoked action potential or excitatory responses evoked by focal application of γ-aminobutyric acid (GABA). Taken together, ketamine inhibits synaptic transmission and nicotine- and ACh-evoked currents in adult rat ICG. Ketamine inhibition of synaptic transmission and nAChR-mediated responses in the ICG contributes significantly to its attenuation of the bradycardia observed in response to vagal stimulation in the mammalian heart. •Ketamine attenuated the excitatory postsynaptic responses evoked by nerve stimulation in a concentration-dependent manner.•This reduction was significant at clinically relevant concentrations at high frequencies.•Ketamine inhibits nicotinic acetylcholine receptor-mediated currents in dissociated rat intracardiac ganglion (ICG) neurons.•Ketamine inhibits cholinergic synaptic transmission in the rat ICG accounting for attenuation of vagal bradycardia.
ISSN:0028-3908
1873-7064
DOI:10.1016/j.neuropharm.2019.107932