Loading…

Polyphenols isolated from lychee seed inhibit Alzheimer's disease-associated Tau through improving insulin resistance via the IRS-1/PI3K/Akt/GSK-3β pathway

Lychee seed, the seed of Litchi chinensis Sonn. is one of the commonly used in traditional Chinese medicine (TCM). It possesses many pharmacological effects such as blood glucose and lipid-lowering effects, liver protection, and antioxidation. Our preliminary studies have proven that an active fract...

Full description

Saved in:
Bibliographic Details
Published in:Journal of ethnopharmacology 2020-04, Vol.251, p.112548-112548, Article 112548
Main Authors: Xiong, Rui, Wang, Xiu-Ling, Wu, Jian-Ming, Tang, Yong, Qiu, Wen-Qiao, Shen, Xin, Teng, Jin-Feng, Pan, Rong, Zhao, Ya, Yu, Lu, Liu, Jian, Chen, Hai-Xia, Qin, Da-Lian, Yu, Chong-Lin, Wu, An-Guo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lychee seed, the seed of Litchi chinensis Sonn. is one of the commonly used in traditional Chinese medicine (TCM). It possesses many pharmacological effects such as blood glucose and lipid-lowering effects, liver protection, and antioxidation. Our preliminary studies have proven that an active fraction derived from lychee seed (LSF) can significantly decrease the blood glucose level, inhibit amyloid-β (Aβ) fibril formation and Tau hyperphosphorylation, and improve the cognitive function and behavior of Alzheimer's disease (AD) model rats. The aim of this study was to identify the main active components in LSF that can inhibit the hyperphosphorylation of Tau through improving insulin resistance (IR) in dexamethasone (DXM)-induced HepG2 and HT22 cells. The isolation was guided by the bioactivity evaluation of the improvement effect of IR in HepG2 and HT22 cells. The mRNA and protein expressions of IRS-1, PI3K, Akt, GSK-3β, and Tau were measured by RT-PCR, Western blotting, and immunofluorescence methods, respectively. After extraction, isolation, and elucidation using chromatography and spectrum technologies, three polyphenols including catechin, procyanidin A1 and procyanidin A2 were identified from fractions 3, 5, and 9 derived from LSF. These polyphenols inhibit hyperphosphorylated Tau via the up-regulation of IRS-1/PI3K/Akt and down-regulation of GSK-3β. Molecular docking result further demonstrate that these polyphenols exhibit good binding property with insulin receptor. catechin, procyanidin A1, and procyanidin A2 are the main components in LSF that inhibit Tau hyperphosphorylation through improving IR via the IRS-1/PI3K/Akt/GSK-3β pathway. Therefore, the findings in the current study provide novel insight into the anti-AD mechanism of the components in LSF derived from lychee seed, which is valuable for the further development of a novel drug or nutrient supplement for the prevention and treatment of AD. [Display omitted]
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2020.112548