Loading…

Phasic Modulation of Hippocampal Synaptic Plasticity by Theta Rhythm

Theta rhythm and long-term potentiation (LTP) are 2 remarkable discoveries. The theta rhythm is an oscillatory neural activity of 3-10 Hz in the hippocampus. LTP is implicated as a cellular basis of memory, but the function of theta oscillation in memory is not clear. This review suggests that theta...

Full description

Saved in:
Bibliographic Details
Published in:Behavioral neuroscience 2020-12, Vol.134 (6), p.595-612
Main Authors: Leung, L. Stan, Law, Clayton S. H.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a380t-409a3c6eca81ef7cc7cff22c97dbeed64ee0ac7d45de857d0ce9390576d885af3
cites
container_end_page 612
container_issue 6
container_start_page 595
container_title Behavioral neuroscience
container_volume 134
creator Leung, L. Stan
Law, Clayton S. H.
description Theta rhythm and long-term potentiation (LTP) are 2 remarkable discoveries. The theta rhythm is an oscillatory neural activity of 3-10 Hz in the hippocampus. LTP is implicated as a cellular basis of memory, but the function of theta oscillation in memory is not clear. This review suggests that theta rhythm bestows optimal conditions for hippocampal LTP and memory encoding. Theta rhythm in hippocampal CA1 is generated mainly by 2 oscillating dipoles-somatic-inhibition and phase-shifted, distal dendritic excitation, with a smaller contribution by rhythmic proximal (CA3) excitation and distal inhibition. Our recent study showed that LTP of the excitatory synapses on the basal or apical dendrites of CA1 pyramidal cells peaked twice in a theta cycle, at the rising (R) and the midcycle (M) phase of the theta rhythm recorded at the distal apical dendrites. In contrast, evoked population spike excitability peaked at a single phase near the midcycle. We infer that R and M peaks of LTP correspond to maximal dendritic depolarization and maximal somatic depolarization of CA1 pyramidal cells, respectively. A ∼50° phase shift between LTP-versus-theta-phase functions suggests independent LTP at the basal and apical dendrites. It is argued that theta phase-dependent LTP occurs under physiological conditions, by pairing presynaptic activity with oscillating postsynaptic depolarization. Place cells, showing intrinsic membrane potential oscillations, are ideal LTP participants. It is suggested that theta phase-dependent LTP contributes to memory encoding, and disruption of either theta oscillation or LTP may disrupt memory in various neurological disorders, including epilepsy and Alzheimer's disease.
doi_str_mv 10.1037/bne0000354
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2335175404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2338973103</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-409a3c6eca81ef7cc7cff22c97dbeed64ee0ac7d45de857d0ce9390576d885af3</originalsourceid><addsrcrecordid>eNp90UtLxDAQB_DgA111L34AKXgRsZo0SdMcZX2Couh6DrPplK30ZdIe-u3Nsj7AgzlkLr8Mmf8QcsjoOaNcXSwapOFwKTbIhGmuY0ozsUmmWmVMcJ7pcKVbZEIVl7GiQuySPe_fwxtBhdwhu5xpliotJuTqeQm-tNFjmw8V9GXbRG0R3ZVd11qoO6ii17GBrg_kuQIfatmP0WKM5kvsIXpZjv2yPiDbBVQep191n7zdXM9nd_HD0-397PIhBp7RPhZUA7cpWsgYFspaZYsiSaxW-QIxTwUiBatyIXPMpMqpxTAclSrNs0xCwffJybpv59qPAX1v6tJbrCposB28STiXTMkwZKDHf-h7O7gm_M4kQmuapAnj_6pVjoqHwIM6XSvrWu8dFqZzZQ1uNIya1UbM70YCPvpqOSxqzH_od-QBnK0BdGA6P1pwIdUKvR2cw6ZfNTOMC5MaqSX_BKC5kk0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338973103</pqid></control><display><type>article</type><title>Phasic Modulation of Hippocampal Synaptic Plasticity by Theta Rhythm</title><source>EBSCOhost APA PsycARTICLES</source><creator>Leung, L. Stan ; Law, Clayton S. H.</creator><contributor>Schoenbaum, Geoffrey ; Burwell, Rebecca D ; Maurer, Drew P ; Burke, Sara N</contributor><creatorcontrib>Leung, L. Stan ; Law, Clayton S. H. ; Schoenbaum, Geoffrey ; Burwell, Rebecca D ; Maurer, Drew P ; Burke, Sara N</creatorcontrib><description>Theta rhythm and long-term potentiation (LTP) are 2 remarkable discoveries. The theta rhythm is an oscillatory neural activity of 3-10 Hz in the hippocampus. LTP is implicated as a cellular basis of memory, but the function of theta oscillation in memory is not clear. This review suggests that theta rhythm bestows optimal conditions for hippocampal LTP and memory encoding. Theta rhythm in hippocampal CA1 is generated mainly by 2 oscillating dipoles-somatic-inhibition and phase-shifted, distal dendritic excitation, with a smaller contribution by rhythmic proximal (CA3) excitation and distal inhibition. Our recent study showed that LTP of the excitatory synapses on the basal or apical dendrites of CA1 pyramidal cells peaked twice in a theta cycle, at the rising (R) and the midcycle (M) phase of the theta rhythm recorded at the distal apical dendrites. In contrast, evoked population spike excitability peaked at a single phase near the midcycle. We infer that R and M peaks of LTP correspond to maximal dendritic depolarization and maximal somatic depolarization of CA1 pyramidal cells, respectively. A ∼50° phase shift between LTP-versus-theta-phase functions suggests independent LTP at the basal and apical dendrites. It is argued that theta phase-dependent LTP occurs under physiological conditions, by pairing presynaptic activity with oscillating postsynaptic depolarization. Place cells, showing intrinsic membrane potential oscillations, are ideal LTP participants. It is suggested that theta phase-dependent LTP contributes to memory encoding, and disruption of either theta oscillation or LTP may disrupt memory in various neurological disorders, including epilepsy and Alzheimer's disease.</description><identifier>ISSN: 0735-7044</identifier><identifier>ISBN: 9781433894336</identifier><identifier>ISBN: 1433894335</identifier><identifier>EISSN: 1939-0084</identifier><identifier>DOI: 10.1037/bne0000354</identifier><identifier>PMID: 31916794</identifier><language>eng</language><publisher>United States: American Psychological Association</publisher><subject>Alzheimer's disease ; Animal memory ; Dendrites ; Depolarization ; Epilepsy ; Excitability ; Hippocampal plasticity ; Hippocampus ; Human ; Human Information Storage ; Long Term Memory ; Long-term Potentiation ; Membrane potential ; Neurodegenerative diseases ; Neurological diseases ; Oscillations ; Oscillatory Network ; Pyramidal cells ; Pyramidal Neurons ; Synaptic Plasticity ; Theta Rhythm</subject><ispartof>Behavioral neuroscience, 2020-12, Vol.134 (6), p.595-612</ispartof><rights>2020 American Psychological Association</rights><rights>2020, American Psychological Association</rights><rights>Copyright American Psychological Association Dec 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-409a3c6eca81ef7cc7cff22c97dbeed64ee0ac7d45de857d0ce9390576d885af3</citedby><orcidid>0000-0001-8887-4869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31916794$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schoenbaum, Geoffrey</contributor><contributor>Burwell, Rebecca D</contributor><contributor>Maurer, Drew P</contributor><contributor>Burke, Sara N</contributor><creatorcontrib>Leung, L. Stan</creatorcontrib><creatorcontrib>Law, Clayton S. H.</creatorcontrib><title>Phasic Modulation of Hippocampal Synaptic Plasticity by Theta Rhythm</title><title>Behavioral neuroscience</title><addtitle>Behav Neurosci</addtitle><description>Theta rhythm and long-term potentiation (LTP) are 2 remarkable discoveries. The theta rhythm is an oscillatory neural activity of 3-10 Hz in the hippocampus. LTP is implicated as a cellular basis of memory, but the function of theta oscillation in memory is not clear. This review suggests that theta rhythm bestows optimal conditions for hippocampal LTP and memory encoding. Theta rhythm in hippocampal CA1 is generated mainly by 2 oscillating dipoles-somatic-inhibition and phase-shifted, distal dendritic excitation, with a smaller contribution by rhythmic proximal (CA3) excitation and distal inhibition. Our recent study showed that LTP of the excitatory synapses on the basal or apical dendrites of CA1 pyramidal cells peaked twice in a theta cycle, at the rising (R) and the midcycle (M) phase of the theta rhythm recorded at the distal apical dendrites. In contrast, evoked population spike excitability peaked at a single phase near the midcycle. We infer that R and M peaks of LTP correspond to maximal dendritic depolarization and maximal somatic depolarization of CA1 pyramidal cells, respectively. A ∼50° phase shift between LTP-versus-theta-phase functions suggests independent LTP at the basal and apical dendrites. It is argued that theta phase-dependent LTP occurs under physiological conditions, by pairing presynaptic activity with oscillating postsynaptic depolarization. Place cells, showing intrinsic membrane potential oscillations, are ideal LTP participants. It is suggested that theta phase-dependent LTP contributes to memory encoding, and disruption of either theta oscillation or LTP may disrupt memory in various neurological disorders, including epilepsy and Alzheimer's disease.</description><subject>Alzheimer's disease</subject><subject>Animal memory</subject><subject>Dendrites</subject><subject>Depolarization</subject><subject>Epilepsy</subject><subject>Excitability</subject><subject>Hippocampal plasticity</subject><subject>Hippocampus</subject><subject>Human</subject><subject>Human Information Storage</subject><subject>Long Term Memory</subject><subject>Long-term Potentiation</subject><subject>Membrane potential</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Oscillations</subject><subject>Oscillatory Network</subject><subject>Pyramidal cells</subject><subject>Pyramidal Neurons</subject><subject>Synaptic Plasticity</subject><subject>Theta Rhythm</subject><issn>0735-7044</issn><issn>1939-0084</issn><isbn>9781433894336</isbn><isbn>1433894335</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90UtLxDAQB_DgA111L34AKXgRsZo0SdMcZX2Couh6DrPplK30ZdIe-u3Nsj7AgzlkLr8Mmf8QcsjoOaNcXSwapOFwKTbIhGmuY0ozsUmmWmVMcJ7pcKVbZEIVl7GiQuySPe_fwxtBhdwhu5xpliotJuTqeQm-tNFjmw8V9GXbRG0R3ZVd11qoO6ii17GBrg_kuQIfatmP0WKM5kvsIXpZjv2yPiDbBVQep191n7zdXM9nd_HD0-397PIhBp7RPhZUA7cpWsgYFspaZYsiSaxW-QIxTwUiBatyIXPMpMqpxTAclSrNs0xCwffJybpv59qPAX1v6tJbrCposB28STiXTMkwZKDHf-h7O7gm_M4kQmuapAnj_6pVjoqHwIM6XSvrWu8dFqZzZQ1uNIya1UbM70YCPvpqOSxqzH_od-QBnK0BdGA6P1pwIdUKvR2cw6ZfNTOMC5MaqSX_BKC5kk0</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Leung, L. Stan</creator><creator>Law, Clayton S. H.</creator><general>American Psychological Association</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8887-4869</orcidid></search><sort><creationdate>202012</creationdate><title>Phasic Modulation of Hippocampal Synaptic Plasticity by Theta Rhythm</title><author>Leung, L. Stan ; Law, Clayton S. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-409a3c6eca81ef7cc7cff22c97dbeed64ee0ac7d45de857d0ce9390576d885af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alzheimer's disease</topic><topic>Animal memory</topic><topic>Dendrites</topic><topic>Depolarization</topic><topic>Epilepsy</topic><topic>Excitability</topic><topic>Hippocampal plasticity</topic><topic>Hippocampus</topic><topic>Human</topic><topic>Human Information Storage</topic><topic>Long Term Memory</topic><topic>Long-term Potentiation</topic><topic>Membrane potential</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Oscillations</topic><topic>Oscillatory Network</topic><topic>Pyramidal cells</topic><topic>Pyramidal Neurons</topic><topic>Synaptic Plasticity</topic><topic>Theta Rhythm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leung, L. Stan</creatorcontrib><creatorcontrib>Law, Clayton S. H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest One Psychology</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Behavioral neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leung, L. Stan</au><au>Law, Clayton S. H.</au><au>Schoenbaum, Geoffrey</au><au>Burwell, Rebecca D</au><au>Maurer, Drew P</au><au>Burke, Sara N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phasic Modulation of Hippocampal Synaptic Plasticity by Theta Rhythm</atitle><jtitle>Behavioral neuroscience</jtitle><addtitle>Behav Neurosci</addtitle><date>2020-12</date><risdate>2020</risdate><volume>134</volume><issue>6</issue><spage>595</spage><epage>612</epage><pages>595-612</pages><issn>0735-7044</issn><eissn>1939-0084</eissn><isbn>9781433894336</isbn><isbn>1433894335</isbn><abstract>Theta rhythm and long-term potentiation (LTP) are 2 remarkable discoveries. The theta rhythm is an oscillatory neural activity of 3-10 Hz in the hippocampus. LTP is implicated as a cellular basis of memory, but the function of theta oscillation in memory is not clear. This review suggests that theta rhythm bestows optimal conditions for hippocampal LTP and memory encoding. Theta rhythm in hippocampal CA1 is generated mainly by 2 oscillating dipoles-somatic-inhibition and phase-shifted, distal dendritic excitation, with a smaller contribution by rhythmic proximal (CA3) excitation and distal inhibition. Our recent study showed that LTP of the excitatory synapses on the basal or apical dendrites of CA1 pyramidal cells peaked twice in a theta cycle, at the rising (R) and the midcycle (M) phase of the theta rhythm recorded at the distal apical dendrites. In contrast, evoked population spike excitability peaked at a single phase near the midcycle. We infer that R and M peaks of LTP correspond to maximal dendritic depolarization and maximal somatic depolarization of CA1 pyramidal cells, respectively. A ∼50° phase shift between LTP-versus-theta-phase functions suggests independent LTP at the basal and apical dendrites. It is argued that theta phase-dependent LTP occurs under physiological conditions, by pairing presynaptic activity with oscillating postsynaptic depolarization. Place cells, showing intrinsic membrane potential oscillations, are ideal LTP participants. It is suggested that theta phase-dependent LTP contributes to memory encoding, and disruption of either theta oscillation or LTP may disrupt memory in various neurological disorders, including epilepsy and Alzheimer's disease.</abstract><cop>United States</cop><pub>American Psychological Association</pub><pmid>31916794</pmid><doi>10.1037/bne0000354</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8887-4869</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0735-7044
ispartof Behavioral neuroscience, 2020-12, Vol.134 (6), p.595-612
issn 0735-7044
1939-0084
language eng
recordid cdi_proquest_miscellaneous_2335175404
source EBSCOhost APA PsycARTICLES
subjects Alzheimer's disease
Animal memory
Dendrites
Depolarization
Epilepsy
Excitability
Hippocampal plasticity
Hippocampus
Human
Human Information Storage
Long Term Memory
Long-term Potentiation
Membrane potential
Neurodegenerative diseases
Neurological diseases
Oscillations
Oscillatory Network
Pyramidal cells
Pyramidal Neurons
Synaptic Plasticity
Theta Rhythm
title Phasic Modulation of Hippocampal Synaptic Plasticity by Theta Rhythm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phasic%20Modulation%20of%20Hippocampal%20Synaptic%20Plasticity%20by%20Theta%20Rhythm&rft.jtitle=Behavioral%20neuroscience&rft.au=Leung,%20L.%20Stan&rft.date=2020-12&rft.volume=134&rft.issue=6&rft.spage=595&rft.epage=612&rft.pages=595-612&rft.issn=0735-7044&rft.eissn=1939-0084&rft.isbn=9781433894336&rft.isbn_list=1433894335&rft_id=info:doi/10.1037/bne0000354&rft_dat=%3Cproquest_cross%3E2338973103%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a380t-409a3c6eca81ef7cc7cff22c97dbeed64ee0ac7d45de857d0ce9390576d885af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2338973103&rft_id=info:pmid/31916794&rfr_iscdi=true