Loading…

Ultraviolet irradiation assisted liquid phase deposited titanium dioxide (TiO2)-incorporated into phytic acid coating on magnesium for slowing-down biodegradation and improving osteo-compatibility

It remains challenging to build up a multifunctional coating onto biodegradable magnesium (Mg) for biomedical use. In this study, a small amount of titanium dioxide (TiO2) has been incorporated in situ into phytic acid (PA) coating when it was chemically deposited on Mg substrate targeted to biodegr...

Full description

Saved in:
Bibliographic Details
Published in:Materials Science & Engineering C 2020-03, Vol.108, p.110487-110487, Article 110487
Main Authors: Tang, Xin, Zhang, Xuan, Chen, Yingqi, Zhang, Wentai, Qian, Junyu, Soliman, Hanaa, Qu, Ai, Liu, Qijun, Pu, Shimin, Huang, Nan, Wan, Guojiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c384t-b23030eb5bb22100fd0cdc34e02af4f2189db2df31ecaa01bde8d28314ebd0803
cites cdi_FETCH-LOGICAL-c384t-b23030eb5bb22100fd0cdc34e02af4f2189db2df31ecaa01bde8d28314ebd0803
container_end_page 110487
container_issue
container_start_page 110487
container_title Materials Science & Engineering C
container_volume 108
creator Tang, Xin
Zhang, Xuan
Chen, Yingqi
Zhang, Wentai
Qian, Junyu
Soliman, Hanaa
Qu, Ai
Liu, Qijun
Pu, Shimin
Huang, Nan
Wan, Guojiang
description It remains challenging to build up a multifunctional coating onto biodegradable magnesium (Mg) for biomedical use. In this study, a small amount of titanium dioxide (TiO2) has been incorporated in situ into phytic acid (PA) coating when it was chemically deposited on Mg substrate targeted to biodegradable implant applications. Ultraviolet (UV) irradiation was utilized in the liquid phase deposition of TiO2 to improve the quality of coating (PA&TiO2-UV). This PA&TiO2-UV coating was compact, thicker and more hydrophilic compared with sole PA or TiO2 coating. The PA&TiO2-UV coated Mg presented a seven times lower electrochemical corrosion current density as well as significantly slower in vitro degradation rate up to 500 h in phosphate buffer saline as compared to the direct PA coated Mg. In addition, the UV irradiation showed remarkably to promote the MC3T3-E1 pre-osteoblast cells adhesion and proliferation especially after 7 days of culture. Further, the PA&TiO2-UV coating adhered more firmly on Mg substrate after 90° bending than the other coatings, indicating a better mechanical compliance on Mg substrate. These results make this PA&TiO2-UV complex coating bodes well for biodegradation slowing-down, osteo-compatible as well as mechanical compliant modification of Mg for orthopedic implants applications. [Display omitted] •UV-assisted deposited TiO2 incorporated into PA coating was constructed on Mg.•Inorganic TiO2 incorporated improved magnificently the quality of PA coating.•Significantly small degradation rate was obtained on PA&TiO2-UV coated Mg.•The UV-assisted PA&TiO2 complex coating had a good adhesive strength on Mg.•UV-irradiated coated Mg sample promoted bone cells adhesion and proliferation.
doi_str_mv 10.1016/j.msec.2019.110487
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2336245910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0928493119302814</els_id><sourcerecordid>2354309389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-b23030eb5bb22100fd0cdc34e02af4f2189db2df31ecaa01bde8d28314ebd0803</originalsourceid><addsrcrecordid>eNp9kc1uEzEUhS1ERUPhBVggS2zKYoJ_JolHYoMqfipV6qZdWx77TrjRjD21PSl5Px4MTxNYsOjK0r3fOT66h5B3nC054-tPu-WQwC4F482Sc1arzQuy4GojqzLhL8mCNUJVdSP5OXmd0o6xtZIb8YqcS94I2azVgvy-73M0eww9ZIoxGocmY_DUpIQpg6M9Pkzo6PjTJKAOxpBwHmfMxuM0UIfhFzqgl3d4Kz5W6G2IY4hmhtDnUJSHjJYaW1xsKO5-S8sHg9l6SLNDFyJNfXgsi8qFR09bDA62Jcspii9OwxjD_klaUoXKhmEs2xZ7zIc35KwzfYK3p_eC3H_7enf1o7q5_X599eWmslLVuWqFZJJBu2pbIThjnWPWWVkDE6arO8FV41rhOsnBGsN460A5oSSvoXVMMXlBLo--JcvDBCnrAZOFvjcewpS0kHIt6lXDZ_TDf-guTNGXdIVa1ZI1UjWFEkfKxpBShE6PEQcTD5ozPXesd3ruWM8d62PHRfT-ZD21A7h_kr-lFuDzEYByiz1C1MkieAsOI9isXcDn_P8Ax9K-FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354309389</pqid></control><display><type>article</type><title>Ultraviolet irradiation assisted liquid phase deposited titanium dioxide (TiO2)-incorporated into phytic acid coating on magnesium for slowing-down biodegradation and improving osteo-compatibility</title><source>ScienceDirect Freedom Collection</source><creator>Tang, Xin ; Zhang, Xuan ; Chen, Yingqi ; Zhang, Wentai ; Qian, Junyu ; Soliman, Hanaa ; Qu, Ai ; Liu, Qijun ; Pu, Shimin ; Huang, Nan ; Wan, Guojiang</creator><creatorcontrib>Tang, Xin ; Zhang, Xuan ; Chen, Yingqi ; Zhang, Wentai ; Qian, Junyu ; Soliman, Hanaa ; Qu, Ai ; Liu, Qijun ; Pu, Shimin ; Huang, Nan ; Wan, Guojiang</creatorcontrib><description><![CDATA[It remains challenging to build up a multifunctional coating onto biodegradable magnesium (Mg) for biomedical use. In this study, a small amount of titanium dioxide (TiO2) has been incorporated in situ into phytic acid (PA) coating when it was chemically deposited on Mg substrate targeted to biodegradable implant applications. Ultraviolet (UV) irradiation was utilized in the liquid phase deposition of TiO2 to improve the quality of coating (PA&TiO2-UV). This PA&TiO2-UV coating was compact, thicker and more hydrophilic compared with sole PA or TiO2 coating. The PA&TiO2-UV coated Mg presented a seven times lower electrochemical corrosion current density as well as significantly slower in vitro degradation rate up to 500 h in phosphate buffer saline as compared to the direct PA coated Mg. In addition, the UV irradiation showed remarkably to promote the MC3T3-E1 pre-osteoblast cells adhesion and proliferation especially after 7 days of culture. Further, the PA&TiO2-UV coating adhered more firmly on Mg substrate after 90° bending than the other coatings, indicating a better mechanical compliance on Mg substrate. These results make this PA&TiO2-UV complex coating bodes well for biodegradation slowing-down, osteo-compatible as well as mechanical compliant modification of Mg for orthopedic implants applications. [Display omitted] •UV-assisted deposited TiO2 incorporated into PA coating was constructed on Mg.•Inorganic TiO2 incorporated improved magnificently the quality of PA coating.•Significantly small degradation rate was obtained on PA&TiO2-UV coated Mg.•The UV-assisted PA&TiO2 complex coating had a good adhesive strength on Mg.•UV-irradiated coated Mg sample promoted bone cells adhesion and proliferation.]]></description><identifier>ISSN: 0928-4931</identifier><identifier>EISSN: 1873-0191</identifier><identifier>DOI: 10.1016/j.msec.2019.110487</identifier><identifier>PMID: 31923968</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Biocompatibility ; Biodegradability ; Biodegradable metals ; Biodegradation ; Biomedical materials ; Cell adhesion &amp; migration ; Cell culture ; Cell proliferation ; Coatings ; Complex coating ; Corrosion currents ; Electrochemical corrosion ; Electrochemistry ; Irradiation ; Liquid phase deposition ; Liquid phases ; Magnesium ; Materials science ; Mechanical compliance ; Organic chemistry ; Orthopaedic implants ; Orthopedics ; Osteo-compatibility ; Phytic acid ; Substrates ; Surgical implants ; Titanium ; Titanium dioxide ; Transplants &amp; implants ; Ultraviolet radiation ; UV-assisted liquid deposition</subject><ispartof>Materials Science &amp; Engineering C, 2020-03, Vol.108, p.110487-110487, Article 110487</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Mar 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-b23030eb5bb22100fd0cdc34e02af4f2189db2df31ecaa01bde8d28314ebd0803</citedby><cites>FETCH-LOGICAL-c384t-b23030eb5bb22100fd0cdc34e02af4f2189db2df31ecaa01bde8d28314ebd0803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31923968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Xin</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Chen, Yingqi</creatorcontrib><creatorcontrib>Zhang, Wentai</creatorcontrib><creatorcontrib>Qian, Junyu</creatorcontrib><creatorcontrib>Soliman, Hanaa</creatorcontrib><creatorcontrib>Qu, Ai</creatorcontrib><creatorcontrib>Liu, Qijun</creatorcontrib><creatorcontrib>Pu, Shimin</creatorcontrib><creatorcontrib>Huang, Nan</creatorcontrib><creatorcontrib>Wan, Guojiang</creatorcontrib><title>Ultraviolet irradiation assisted liquid phase deposited titanium dioxide (TiO2)-incorporated into phytic acid coating on magnesium for slowing-down biodegradation and improving osteo-compatibility</title><title>Materials Science &amp; Engineering C</title><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><description><![CDATA[It remains challenging to build up a multifunctional coating onto biodegradable magnesium (Mg) for biomedical use. In this study, a small amount of titanium dioxide (TiO2) has been incorporated in situ into phytic acid (PA) coating when it was chemically deposited on Mg substrate targeted to biodegradable implant applications. Ultraviolet (UV) irradiation was utilized in the liquid phase deposition of TiO2 to improve the quality of coating (PA&TiO2-UV). This PA&TiO2-UV coating was compact, thicker and more hydrophilic compared with sole PA or TiO2 coating. The PA&TiO2-UV coated Mg presented a seven times lower electrochemical corrosion current density as well as significantly slower in vitro degradation rate up to 500 h in phosphate buffer saline as compared to the direct PA coated Mg. In addition, the UV irradiation showed remarkably to promote the MC3T3-E1 pre-osteoblast cells adhesion and proliferation especially after 7 days of culture. Further, the PA&TiO2-UV coating adhered more firmly on Mg substrate after 90° bending than the other coatings, indicating a better mechanical compliance on Mg substrate. These results make this PA&TiO2-UV complex coating bodes well for biodegradation slowing-down, osteo-compatible as well as mechanical compliant modification of Mg for orthopedic implants applications. [Display omitted] •UV-assisted deposited TiO2 incorporated into PA coating was constructed on Mg.•Inorganic TiO2 incorporated improved magnificently the quality of PA coating.•Significantly small degradation rate was obtained on PA&TiO2-UV coated Mg.•The UV-assisted PA&TiO2 complex coating had a good adhesive strength on Mg.•UV-irradiated coated Mg sample promoted bone cells adhesion and proliferation.]]></description><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biodegradable metals</subject><subject>Biodegradation</subject><subject>Biomedical materials</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell culture</subject><subject>Cell proliferation</subject><subject>Coatings</subject><subject>Complex coating</subject><subject>Corrosion currents</subject><subject>Electrochemical corrosion</subject><subject>Electrochemistry</subject><subject>Irradiation</subject><subject>Liquid phase deposition</subject><subject>Liquid phases</subject><subject>Magnesium</subject><subject>Materials science</subject><subject>Mechanical compliance</subject><subject>Organic chemistry</subject><subject>Orthopaedic implants</subject><subject>Orthopedics</subject><subject>Osteo-compatibility</subject><subject>Phytic acid</subject><subject>Substrates</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Transplants &amp; implants</subject><subject>Ultraviolet radiation</subject><subject>UV-assisted liquid deposition</subject><issn>0928-4931</issn><issn>1873-0191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc1uEzEUhS1ERUPhBVggS2zKYoJ_JolHYoMqfipV6qZdWx77TrjRjD21PSl5Px4MTxNYsOjK0r3fOT66h5B3nC054-tPu-WQwC4F482Sc1arzQuy4GojqzLhL8mCNUJVdSP5OXmd0o6xtZIb8YqcS94I2azVgvy-73M0eww9ZIoxGocmY_DUpIQpg6M9Pkzo6PjTJKAOxpBwHmfMxuM0UIfhFzqgl3d4Kz5W6G2IY4hmhtDnUJSHjJYaW1xsKO5-S8sHg9l6SLNDFyJNfXgsi8qFR09bDA62Jcspii9OwxjD_klaUoXKhmEs2xZ7zIc35KwzfYK3p_eC3H_7enf1o7q5_X599eWmslLVuWqFZJJBu2pbIThjnWPWWVkDE6arO8FV41rhOsnBGsN460A5oSSvoXVMMXlBLo--JcvDBCnrAZOFvjcewpS0kHIt6lXDZ_TDf-guTNGXdIVa1ZI1UjWFEkfKxpBShE6PEQcTD5ozPXesd3ruWM8d62PHRfT-ZD21A7h_kr-lFuDzEYByiz1C1MkieAsOI9isXcDn_P8Ax9K-FQ</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Tang, Xin</creator><creator>Zhang, Xuan</creator><creator>Chen, Yingqi</creator><creator>Zhang, Wentai</creator><creator>Qian, Junyu</creator><creator>Soliman, Hanaa</creator><creator>Qu, Ai</creator><creator>Liu, Qijun</creator><creator>Pu, Shimin</creator><creator>Huang, Nan</creator><creator>Wan, Guojiang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>202003</creationdate><title>Ultraviolet irradiation assisted liquid phase deposited titanium dioxide (TiO2)-incorporated into phytic acid coating on magnesium for slowing-down biodegradation and improving osteo-compatibility</title><author>Tang, Xin ; Zhang, Xuan ; Chen, Yingqi ; Zhang, Wentai ; Qian, Junyu ; Soliman, Hanaa ; Qu, Ai ; Liu, Qijun ; Pu, Shimin ; Huang, Nan ; Wan, Guojiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-b23030eb5bb22100fd0cdc34e02af4f2189db2df31ecaa01bde8d28314ebd0803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biodegradable metals</topic><topic>Biodegradation</topic><topic>Biomedical materials</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell culture</topic><topic>Cell proliferation</topic><topic>Coatings</topic><topic>Complex coating</topic><topic>Corrosion currents</topic><topic>Electrochemical corrosion</topic><topic>Electrochemistry</topic><topic>Irradiation</topic><topic>Liquid phase deposition</topic><topic>Liquid phases</topic><topic>Magnesium</topic><topic>Materials science</topic><topic>Mechanical compliance</topic><topic>Organic chemistry</topic><topic>Orthopaedic implants</topic><topic>Orthopedics</topic><topic>Osteo-compatibility</topic><topic>Phytic acid</topic><topic>Substrates</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Transplants &amp; implants</topic><topic>Ultraviolet radiation</topic><topic>UV-assisted liquid deposition</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Xin</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Chen, Yingqi</creatorcontrib><creatorcontrib>Zhang, Wentai</creatorcontrib><creatorcontrib>Qian, Junyu</creatorcontrib><creatorcontrib>Soliman, Hanaa</creatorcontrib><creatorcontrib>Qu, Ai</creatorcontrib><creatorcontrib>Liu, Qijun</creatorcontrib><creatorcontrib>Pu, Shimin</creatorcontrib><creatorcontrib>Huang, Nan</creatorcontrib><creatorcontrib>Wan, Guojiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Materials Science &amp; Engineering C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Xin</au><au>Zhang, Xuan</au><au>Chen, Yingqi</au><au>Zhang, Wentai</au><au>Qian, Junyu</au><au>Soliman, Hanaa</au><au>Qu, Ai</au><au>Liu, Qijun</au><au>Pu, Shimin</au><au>Huang, Nan</au><au>Wan, Guojiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultraviolet irradiation assisted liquid phase deposited titanium dioxide (TiO2)-incorporated into phytic acid coating on magnesium for slowing-down biodegradation and improving osteo-compatibility</atitle><jtitle>Materials Science &amp; Engineering C</jtitle><addtitle>Mater Sci Eng C Mater Biol Appl</addtitle><date>2020-03</date><risdate>2020</risdate><volume>108</volume><spage>110487</spage><epage>110487</epage><pages>110487-110487</pages><artnum>110487</artnum><issn>0928-4931</issn><eissn>1873-0191</eissn><abstract><![CDATA[It remains challenging to build up a multifunctional coating onto biodegradable magnesium (Mg) for biomedical use. In this study, a small amount of titanium dioxide (TiO2) has been incorporated in situ into phytic acid (PA) coating when it was chemically deposited on Mg substrate targeted to biodegradable implant applications. Ultraviolet (UV) irradiation was utilized in the liquid phase deposition of TiO2 to improve the quality of coating (PA&TiO2-UV). This PA&TiO2-UV coating was compact, thicker and more hydrophilic compared with sole PA or TiO2 coating. The PA&TiO2-UV coated Mg presented a seven times lower electrochemical corrosion current density as well as significantly slower in vitro degradation rate up to 500 h in phosphate buffer saline as compared to the direct PA coated Mg. In addition, the UV irradiation showed remarkably to promote the MC3T3-E1 pre-osteoblast cells adhesion and proliferation especially after 7 days of culture. Further, the PA&TiO2-UV coating adhered more firmly on Mg substrate after 90° bending than the other coatings, indicating a better mechanical compliance on Mg substrate. These results make this PA&TiO2-UV complex coating bodes well for biodegradation slowing-down, osteo-compatible as well as mechanical compliant modification of Mg for orthopedic implants applications. [Display omitted] •UV-assisted deposited TiO2 incorporated into PA coating was constructed on Mg.•Inorganic TiO2 incorporated improved magnificently the quality of PA coating.•Significantly small degradation rate was obtained on PA&TiO2-UV coated Mg.•The UV-assisted PA&TiO2 complex coating had a good adhesive strength on Mg.•UV-irradiated coated Mg sample promoted bone cells adhesion and proliferation.]]></abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31923968</pmid><doi>10.1016/j.msec.2019.110487</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0928-4931
ispartof Materials Science & Engineering C, 2020-03, Vol.108, p.110487-110487, Article 110487
issn 0928-4931
1873-0191
language eng
recordid cdi_proquest_miscellaneous_2336245910
source ScienceDirect Freedom Collection
subjects Biocompatibility
Biodegradability
Biodegradable metals
Biodegradation
Biomedical materials
Cell adhesion & migration
Cell culture
Cell proliferation
Coatings
Complex coating
Corrosion currents
Electrochemical corrosion
Electrochemistry
Irradiation
Liquid phase deposition
Liquid phases
Magnesium
Materials science
Mechanical compliance
Organic chemistry
Orthopaedic implants
Orthopedics
Osteo-compatibility
Phytic acid
Substrates
Surgical implants
Titanium
Titanium dioxide
Transplants & implants
Ultraviolet radiation
UV-assisted liquid deposition
title Ultraviolet irradiation assisted liquid phase deposited titanium dioxide (TiO2)-incorporated into phytic acid coating on magnesium for slowing-down biodegradation and improving osteo-compatibility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultraviolet%20irradiation%20assisted%20liquid%20phase%20deposited%20titanium%20dioxide%20(TiO2)-incorporated%20into%20phytic%20acid%20coating%20on%20magnesium%20for%20slowing-down%20biodegradation%20and%20improving%20osteo-compatibility&rft.jtitle=Materials%20Science%20&%20Engineering%20C&rft.au=Tang,%20Xin&rft.date=2020-03&rft.volume=108&rft.spage=110487&rft.epage=110487&rft.pages=110487-110487&rft.artnum=110487&rft.issn=0928-4931&rft.eissn=1873-0191&rft_id=info:doi/10.1016/j.msec.2019.110487&rft_dat=%3Cproquest_cross%3E2354309389%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c384t-b23030eb5bb22100fd0cdc34e02af4f2189db2df31ecaa01bde8d28314ebd0803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354309389&rft_id=info:pmid/31923968&rfr_iscdi=true