Loading…

Semiconductor core-level to valence-band maximum binding-energy differences: precise determination by X-ray photoelectron spectroscopy

Angle-resolved core-level and valence-band X-ray photoelectron spectroscopy (XPS) data for GaAs(110), Ge(110) and Ge(111) surfaces are analyzed to determine core-level to valence-band max. binding-energy differences to a precision of the order of the room-temp. thermal energy. A method for markedly...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B, Condensed matter Condensed matter, 1983-01, Vol.28 (4), p.1965-1977
Main Authors: KRAUT, E. A, GRANT, R. W, WALDROP, J. R, KOWALCZYK, S. P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-d2801fd39507e699d65252ef55bd9bb55ec2fefd9c849ab03bc02cfbab7d031b3
cites cdi_FETCH-LOGICAL-c350t-d2801fd39507e699d65252ef55bd9bb55ec2fefd9c849ab03bc02cfbab7d031b3
container_end_page 1977
container_issue 4
container_start_page 1965
container_title Physical review. B, Condensed matter
container_volume 28
creator KRAUT, E. A
GRANT, R. W
WALDROP, J. R
KOWALCZYK, S. P
description Angle-resolved core-level and valence-band X-ray photoelectron spectroscopy (XPS) data for GaAs(110), Ge(110) and Ge(111) surfaces are analyzed to determine core-level to valence-band max. binding-energy differences to a precision of the order of the room-temp. thermal energy. A method for markedly improving the precision with which the position of the valence-band max. in XPS data can be located is presented. This method is based on modeling the XPS valence-band spectrum in the vicinity of the valence-band max. by an instrumentally broadened theoretical valence-band density-of-states and fitting this model to the experimental data using the least-squares method. The factors which influence the attainable precision for determining core-level to valence-band max. binding-energy differences are quantitatively discussed. These factors include the presence of occupied surface states, band bending, surface chemical shifts, background effects associated with inelastic processes, instrumental line shape and spectrometer calibration accuracy. Ths spin-orbit--split components of the Ga, arsenic and Ge 3d core lines are resolved and binding energies of these components, measured relative to the valence-band max. in GaAs and Ge, are reported. 55 ref.--AA
doi_str_mv 10.1103/PhysRevB.28.1965
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23363810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23363810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-d2801fd39507e699d65252ef55bd9bb55ec2fefd9c849ab03bc02cfbab7d031b3</originalsourceid><addsrcrecordid>eNo9kEtP3DAUhS1EpU4H9l16gdh56gfOxOwoAlpppKJCJXaRH9eMUWKndjIif6C_u5ky5W7u1dU5R0cfQp8ZXTFGxZf77VR-wu7ritcrpip5hBaMKknEWsljtKCsEoTVXH1En0p5ofPwSi3Qnwfogk3RjXZIGduUgbSwgxYPCe90C9ECMTo63OnX0I0dNiG6EJ8JRMjPE3bBe8h7WbnEfQYbCmAHA-QuRD2EFLGZ8BPJesL9Ng0JWrBDnt-l_3cUm_rpBH3wui1wethL9Ov25vH6G9n8uPt-fbUhVkg6EMdryrwTStI1VEq5SnLJwUtpnDJGSrDcg3fK1hdKGyqMpdx6o83aUcGMWKLzt9w-p98jlKHpQrHQtjpCGkvDhahEPfNcIvomtHPDksE3fQ6dzlPDaLMH3vwH3vC62QOfLWeHbF2sbn3WcYbx7lNC0DW_EH8BoAeHMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23363810</pqid></control><display><type>article</type><title>Semiconductor core-level to valence-band maximum binding-energy differences: precise determination by X-ray photoelectron spectroscopy</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>KRAUT, E. A ; GRANT, R. W ; WALDROP, J. R ; KOWALCZYK, S. P</creator><creatorcontrib>KRAUT, E. A ; GRANT, R. W ; WALDROP, J. R ; KOWALCZYK, S. P</creatorcontrib><description>Angle-resolved core-level and valence-band X-ray photoelectron spectroscopy (XPS) data for GaAs(110), Ge(110) and Ge(111) surfaces are analyzed to determine core-level to valence-band max. binding-energy differences to a precision of the order of the room-temp. thermal energy. A method for markedly improving the precision with which the position of the valence-band max. in XPS data can be located is presented. This method is based on modeling the XPS valence-band spectrum in the vicinity of the valence-band max. by an instrumentally broadened theoretical valence-band density-of-states and fitting this model to the experimental data using the least-squares method. The factors which influence the attainable precision for determining core-level to valence-band max. binding-energy differences are quantitatively discussed. These factors include the presence of occupied surface states, band bending, surface chemical shifts, background effects associated with inelastic processes, instrumental line shape and spectrometer calibration accuracy. Ths spin-orbit--split components of the Ga, arsenic and Ge 3d core lines are resolved and binding energies of these components, measured relative to the valence-band max. in GaAs and Ge, are reported. 55 ref.--AA</description><identifier>ISSN: 0163-1829</identifier><identifier>EISSN: 1095-3795</identifier><identifier>DOI: 10.1103/PhysRevB.28.1965</identifier><identifier>CODEN: PRBMDO</identifier><language>eng</language><publisher>Woodbury, NY: American Physical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electron and ion emission by liquids and solids; impact phenomena ; Exact sciences and technology ; Photoemission and photoelectron spectra ; Physics</subject><ispartof>Physical review. B, Condensed matter, 1983-01, Vol.28 (4), p.1965-1977</ispartof><rights>1984 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-d2801fd39507e699d65252ef55bd9bb55ec2fefd9c849ab03bc02cfbab7d031b3</citedby><cites>FETCH-LOGICAL-c350t-d2801fd39507e699d65252ef55bd9bb55ec2fefd9c849ab03bc02cfbab7d031b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9330724$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KRAUT, E. A</creatorcontrib><creatorcontrib>GRANT, R. W</creatorcontrib><creatorcontrib>WALDROP, J. R</creatorcontrib><creatorcontrib>KOWALCZYK, S. P</creatorcontrib><title>Semiconductor core-level to valence-band maximum binding-energy differences: precise determination by X-ray photoelectron spectroscopy</title><title>Physical review. B, Condensed matter</title><description>Angle-resolved core-level and valence-band X-ray photoelectron spectroscopy (XPS) data for GaAs(110), Ge(110) and Ge(111) surfaces are analyzed to determine core-level to valence-band max. binding-energy differences to a precision of the order of the room-temp. thermal energy. A method for markedly improving the precision with which the position of the valence-band max. in XPS data can be located is presented. This method is based on modeling the XPS valence-band spectrum in the vicinity of the valence-band max. by an instrumentally broadened theoretical valence-band density-of-states and fitting this model to the experimental data using the least-squares method. The factors which influence the attainable precision for determining core-level to valence-band max. binding-energy differences are quantitatively discussed. These factors include the presence of occupied surface states, band bending, surface chemical shifts, background effects associated with inelastic processes, instrumental line shape and spectrometer calibration accuracy. Ths spin-orbit--split components of the Ga, arsenic and Ge 3d core lines are resolved and binding energies of these components, measured relative to the valence-band max. in GaAs and Ge, are reported. 55 ref.--AA</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electron and ion emission by liquids and solids; impact phenomena</subject><subject>Exact sciences and technology</subject><subject>Photoemission and photoelectron spectra</subject><subject>Physics</subject><issn>0163-1829</issn><issn>1095-3795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNo9kEtP3DAUhS1EpU4H9l16gdh56gfOxOwoAlpppKJCJXaRH9eMUWKndjIif6C_u5ky5W7u1dU5R0cfQp8ZXTFGxZf77VR-wu7ritcrpip5hBaMKknEWsljtKCsEoTVXH1En0p5ofPwSi3Qnwfogk3RjXZIGduUgbSwgxYPCe90C9ECMTo63OnX0I0dNiG6EJ8JRMjPE3bBe8h7WbnEfQYbCmAHA-QuRD2EFLGZ8BPJesL9Ng0JWrBDnt-l_3cUm_rpBH3wui1wethL9Ov25vH6G9n8uPt-fbUhVkg6EMdryrwTStI1VEq5SnLJwUtpnDJGSrDcg3fK1hdKGyqMpdx6o83aUcGMWKLzt9w-p98jlKHpQrHQtjpCGkvDhahEPfNcIvomtHPDksE3fQ6dzlPDaLMH3vwH3vC62QOfLWeHbF2sbn3WcYbx7lNC0DW_EH8BoAeHMQ</recordid><startdate>19830101</startdate><enddate>19830101</enddate><creator>KRAUT, E. A</creator><creator>GRANT, R. W</creator><creator>WALDROP, J. R</creator><creator>KOWALCZYK, S. P</creator><general>American Physical Society</general><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19830101</creationdate><title>Semiconductor core-level to valence-band maximum binding-energy differences: precise determination by X-ray photoelectron spectroscopy</title><author>KRAUT, E. A ; GRANT, R. W ; WALDROP, J. R ; KOWALCZYK, S. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-d2801fd39507e699d65252ef55bd9bb55ec2fefd9c849ab03bc02cfbab7d031b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electron and ion emission by liquids and solids; impact phenomena</topic><topic>Exact sciences and technology</topic><topic>Photoemission and photoelectron spectra</topic><topic>Physics</topic><toplevel>online_resources</toplevel><creatorcontrib>KRAUT, E. A</creatorcontrib><creatorcontrib>GRANT, R. W</creatorcontrib><creatorcontrib>WALDROP, J. R</creatorcontrib><creatorcontrib>KOWALCZYK, S. P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Physical review. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KRAUT, E. A</au><au>GRANT, R. W</au><au>WALDROP, J. R</au><au>KOWALCZYK, S. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconductor core-level to valence-band maximum binding-energy differences: precise determination by X-ray photoelectron spectroscopy</atitle><jtitle>Physical review. B, Condensed matter</jtitle><date>1983-01-01</date><risdate>1983</risdate><volume>28</volume><issue>4</issue><spage>1965</spage><epage>1977</epage><pages>1965-1977</pages><issn>0163-1829</issn><eissn>1095-3795</eissn><coden>PRBMDO</coden><abstract>Angle-resolved core-level and valence-band X-ray photoelectron spectroscopy (XPS) data for GaAs(110), Ge(110) and Ge(111) surfaces are analyzed to determine core-level to valence-band max. binding-energy differences to a precision of the order of the room-temp. thermal energy. A method for markedly improving the precision with which the position of the valence-band max. in XPS data can be located is presented. This method is based on modeling the XPS valence-band spectrum in the vicinity of the valence-band max. by an instrumentally broadened theoretical valence-band density-of-states and fitting this model to the experimental data using the least-squares method. The factors which influence the attainable precision for determining core-level to valence-band max. binding-energy differences are quantitatively discussed. These factors include the presence of occupied surface states, band bending, surface chemical shifts, background effects associated with inelastic processes, instrumental line shape and spectrometer calibration accuracy. Ths spin-orbit--split components of the Ga, arsenic and Ge 3d core lines are resolved and binding energies of these components, measured relative to the valence-band max. in GaAs and Ge, are reported. 55 ref.--AA</abstract><cop>Woodbury, NY</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.28.1965</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-1829
ispartof Physical review. B, Condensed matter, 1983-01, Vol.28 (4), p.1965-1977
issn 0163-1829
1095-3795
language eng
recordid cdi_proquest_miscellaneous_23363810
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Electron and ion emission by liquids and solids
impact phenomena
Exact sciences and technology
Photoemission and photoelectron spectra
Physics
title Semiconductor core-level to valence-band maximum binding-energy differences: precise determination by X-ray photoelectron spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T13%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconductor%20core-level%20to%20valence-band%20maximum%20binding-energy%20differences:%20precise%20determination%20by%20X-ray%20photoelectron%20spectroscopy&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter&rft.au=KRAUT,%20E.%20A&rft.date=1983-01-01&rft.volume=28&rft.issue=4&rft.spage=1965&rft.epage=1977&rft.pages=1965-1977&rft.issn=0163-1829&rft.eissn=1095-3795&rft.coden=PRBMDO&rft_id=info:doi/10.1103/PhysRevB.28.1965&rft_dat=%3Cproquest_cross%3E23363810%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-d2801fd39507e699d65252ef55bd9bb55ec2fefd9c849ab03bc02cfbab7d031b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=23363810&rft_id=info:pmid/&rfr_iscdi=true