Loading…
Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints
Long transgenes are often used in mammalian genetics, e.g., to rescue mutations in large genes. In the course of experiments addressing the genetic basis of hybrid sterility caused by meiotic defects in mice bearing different alleles of Prdm9 , we discovered that introduction of copy-number variatio...
Saved in:
Published in: | Chromosoma 2020-03, Vol.129 (1), p.69-82 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33 |
container_end_page | 82 |
container_issue | 1 |
container_start_page | 69 |
container_title | Chromosoma |
container_volume | 129 |
creator | Mihola, Ondrej Kobets, Tatyana Krivankova, Klara Linhartova, Eliska Gasic, Srdjan Schimenti, John C. Trachtulec, Zdenek |
description | Long transgenes are often used in mammalian genetics, e.g., to rescue mutations in large genes. In the course of experiments addressing the genetic basis of hybrid sterility caused by meiotic defects in mice bearing different alleles of
Prdm9
, we discovered that introduction of copy-number variation (CNV) via two independent insertions of long transgenes containing incomplete
Prdm9
decreased testicular weight and epididymal sperm count. Transgenic animals displayed increased occurrence of seminiferous tubules with apoptotic cells at 18 days postpartum (dpp) corresponding to late meiotic prophase I, but not at 21 dpp. We hypothesized that long transgene insertions could cause asynapsis, but the immunocytochemical data revealed that the adult transgenic testes carried a similar percentage of asynaptic pachytene spermatocytes as the controls. These transgenic spermatocytes displayed less crossovers but similar numbers of unrepaired meiotic breaks. Despite slightly increased frequency of metaphase I spermatocytes with univalent chromosome(s) and reduced numbers of metaphase II spermatocytes, cytological studies did not reveal increased apoptosis in tubules containing the metaphase spermatocytes, but found an increased percentage of tubules carrying apoptotic spermatids. Sperm counts of subfertile animals inversely correlated with the transcription levels of the
Psmb1
gene encoded within these two transgenes. The effect of the transgenes was dependent on sex and genetic background. Our results imply that the fertility of transgenic hybrid animals is not compromised by the impaired meiotic synapsis of homologous chromosomes, but can be negatively influenced by the increased expression of the introduced genes. |
doi_str_mv | 10.1007/s00412-019-00730-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2338995315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354926364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33</originalsourceid><addsrcrecordid>eNp9kU-P1SAUxYnROM_RL-DCkLhxU4VCKSzNy_gnmcSNrgmllzcdW6hATRq_vHd8oyYu3AAXfufeEw4hzzl7zRnr3xTGJG8bxk2DpWCNfkAOXAq80lo9JAfGmGk6w7sL8qSU27uyVewxuRDcSMaUOJAfx7TuTdyWATL97vLk6pQinWLNadw8jHTY6ZziidbsYjlBhEJ9WtaclqngeUlbAbq4GWiAXKd5qjvKR1gBl1jnnaZAV-dv9opi6m_Af10TDihPyaPg5gLP7vdL8uXd1efjh-b60_uPx7fXjRd9Vxsleh0kU60chta5ngXdhi5I4ZUzjLvRg4ZgetEPACYoFVqjg-sN770UgxCX5NW5L5r-tkGpFq17mGcXAd3bVghtTCd4h-jLf9DbtOWI7pDqJH6fUBKp9kz5nErJEOyap8Xl3XJm76Kx52gsRmN_RWM1il7ct96GBcY_kt9ZICDOQMGneIL8d_Z_2v4E9secLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354926364</pqid></control><display><type>article</type><title>Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints</title><source>Springer Nature</source><creator>Mihola, Ondrej ; Kobets, Tatyana ; Krivankova, Klara ; Linhartova, Eliska ; Gasic, Srdjan ; Schimenti, John C. ; Trachtulec, Zdenek</creator><creatorcontrib>Mihola, Ondrej ; Kobets, Tatyana ; Krivankova, Klara ; Linhartova, Eliska ; Gasic, Srdjan ; Schimenti, John C. ; Trachtulec, Zdenek</creatorcontrib><description>Long transgenes are often used in mammalian genetics, e.g., to rescue mutations in large genes. In the course of experiments addressing the genetic basis of hybrid sterility caused by meiotic defects in mice bearing different alleles of
Prdm9
, we discovered that introduction of copy-number variation (CNV) via two independent insertions of long transgenes containing incomplete
Prdm9
decreased testicular weight and epididymal sperm count. Transgenic animals displayed increased occurrence of seminiferous tubules with apoptotic cells at 18 days postpartum (dpp) corresponding to late meiotic prophase I, but not at 21 dpp. We hypothesized that long transgene insertions could cause asynapsis, but the immunocytochemical data revealed that the adult transgenic testes carried a similar percentage of asynaptic pachytene spermatocytes as the controls. These transgenic spermatocytes displayed less crossovers but similar numbers of unrepaired meiotic breaks. Despite slightly increased frequency of metaphase I spermatocytes with univalent chromosome(s) and reduced numbers of metaphase II spermatocytes, cytological studies did not reveal increased apoptosis in tubules containing the metaphase spermatocytes, but found an increased percentage of tubules carrying apoptotic spermatids. Sperm counts of subfertile animals inversely correlated with the transcription levels of the
Psmb1
gene encoded within these two transgenes. The effect of the transgenes was dependent on sex and genetic background. Our results imply that the fertility of transgenic hybrid animals is not compromised by the impaired meiotic synapsis of homologous chromosomes, but can be negatively influenced by the increased expression of the introduced genes.</description><identifier>ISSN: 0009-5915</identifier><identifier>EISSN: 1432-0886</identifier><identifier>DOI: 10.1007/s00412-019-00730-8</identifier><identifier>PMID: 31940063</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal Genetics and Genomics ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Chromosomes ; Developmental Biology ; Eukaryotic Microbiology ; Fertility ; Human Genetics ; Life Sciences ; Meiosis ; Metaphase ; Original Article ; Pachytene ; Postpartum ; Prophase ; Sperm ; Spermatids ; Spermatocytes ; Sterility ; Transcription ; Transgenes ; Transgenic animals ; Tubules</subject><ispartof>Chromosoma, 2020-03, Vol.129 (1), p.69-82</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Chromosoma is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33</citedby><cites>FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33</cites><orcidid>0000-0003-3243-0825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31940063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mihola, Ondrej</creatorcontrib><creatorcontrib>Kobets, Tatyana</creatorcontrib><creatorcontrib>Krivankova, Klara</creatorcontrib><creatorcontrib>Linhartova, Eliska</creatorcontrib><creatorcontrib>Gasic, Srdjan</creatorcontrib><creatorcontrib>Schimenti, John C.</creatorcontrib><creatorcontrib>Trachtulec, Zdenek</creatorcontrib><title>Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints</title><title>Chromosoma</title><addtitle>Chromosoma</addtitle><addtitle>Chromosoma</addtitle><description>Long transgenes are often used in mammalian genetics, e.g., to rescue mutations in large genes. In the course of experiments addressing the genetic basis of hybrid sterility caused by meiotic defects in mice bearing different alleles of
Prdm9
, we discovered that introduction of copy-number variation (CNV) via two independent insertions of long transgenes containing incomplete
Prdm9
decreased testicular weight and epididymal sperm count. Transgenic animals displayed increased occurrence of seminiferous tubules with apoptotic cells at 18 days postpartum (dpp) corresponding to late meiotic prophase I, but not at 21 dpp. We hypothesized that long transgene insertions could cause asynapsis, but the immunocytochemical data revealed that the adult transgenic testes carried a similar percentage of asynaptic pachytene spermatocytes as the controls. These transgenic spermatocytes displayed less crossovers but similar numbers of unrepaired meiotic breaks. Despite slightly increased frequency of metaphase I spermatocytes with univalent chromosome(s) and reduced numbers of metaphase II spermatocytes, cytological studies did not reveal increased apoptosis in tubules containing the metaphase spermatocytes, but found an increased percentage of tubules carrying apoptotic spermatids. Sperm counts of subfertile animals inversely correlated with the transcription levels of the
Psmb1
gene encoded within these two transgenes. The effect of the transgenes was dependent on sex and genetic background. Our results imply that the fertility of transgenic hybrid animals is not compromised by the impaired meiotic synapsis of homologous chromosomes, but can be negatively influenced by the increased expression of the introduced genes.</description><subject>Animal Genetics and Genomics</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Chromosomes</subject><subject>Developmental Biology</subject><subject>Eukaryotic Microbiology</subject><subject>Fertility</subject><subject>Human Genetics</subject><subject>Life Sciences</subject><subject>Meiosis</subject><subject>Metaphase</subject><subject>Original Article</subject><subject>Pachytene</subject><subject>Postpartum</subject><subject>Prophase</subject><subject>Sperm</subject><subject>Spermatids</subject><subject>Spermatocytes</subject><subject>Sterility</subject><subject>Transcription</subject><subject>Transgenes</subject><subject>Transgenic animals</subject><subject>Tubules</subject><issn>0009-5915</issn><issn>1432-0886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU-P1SAUxYnROM_RL-DCkLhxU4VCKSzNy_gnmcSNrgmllzcdW6hATRq_vHd8oyYu3AAXfufeEw4hzzl7zRnr3xTGJG8bxk2DpWCNfkAOXAq80lo9JAfGmGk6w7sL8qSU27uyVewxuRDcSMaUOJAfx7TuTdyWATL97vLk6pQinWLNadw8jHTY6ZziidbsYjlBhEJ9WtaclqngeUlbAbq4GWiAXKd5qjvKR1gBl1jnnaZAV-dv9opi6m_Af10TDihPyaPg5gLP7vdL8uXd1efjh-b60_uPx7fXjRd9Vxsleh0kU60chta5ngXdhi5I4ZUzjLvRg4ZgetEPACYoFVqjg-sN770UgxCX5NW5L5r-tkGpFq17mGcXAd3bVghtTCd4h-jLf9DbtOWI7pDqJH6fUBKp9kz5nErJEOyap8Xl3XJm76Kx52gsRmN_RWM1il7ct96GBcY_kt9ZICDOQMGneIL8d_Z_2v4E9secLA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Mihola, Ondrej</creator><creator>Kobets, Tatyana</creator><creator>Krivankova, Klara</creator><creator>Linhartova, Eliska</creator><creator>Gasic, Srdjan</creator><creator>Schimenti, John C.</creator><creator>Trachtulec, Zdenek</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3243-0825</orcidid></search><sort><creationdate>20200301</creationdate><title>Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints</title><author>Mihola, Ondrej ; Kobets, Tatyana ; Krivankova, Klara ; Linhartova, Eliska ; Gasic, Srdjan ; Schimenti, John C. ; Trachtulec, Zdenek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Genetics and Genomics</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Chromosomes</topic><topic>Developmental Biology</topic><topic>Eukaryotic Microbiology</topic><topic>Fertility</topic><topic>Human Genetics</topic><topic>Life Sciences</topic><topic>Meiosis</topic><topic>Metaphase</topic><topic>Original Article</topic><topic>Pachytene</topic><topic>Postpartum</topic><topic>Prophase</topic><topic>Sperm</topic><topic>Spermatids</topic><topic>Spermatocytes</topic><topic>Sterility</topic><topic>Transcription</topic><topic>Transgenes</topic><topic>Transgenic animals</topic><topic>Tubules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mihola, Ondrej</creatorcontrib><creatorcontrib>Kobets, Tatyana</creatorcontrib><creatorcontrib>Krivankova, Klara</creatorcontrib><creatorcontrib>Linhartova, Eliska</creatorcontrib><creatorcontrib>Gasic, Srdjan</creatorcontrib><creatorcontrib>Schimenti, John C.</creatorcontrib><creatorcontrib>Trachtulec, Zdenek</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chromosoma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mihola, Ondrej</au><au>Kobets, Tatyana</au><au>Krivankova, Klara</au><au>Linhartova, Eliska</au><au>Gasic, Srdjan</au><au>Schimenti, John C.</au><au>Trachtulec, Zdenek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints</atitle><jtitle>Chromosoma</jtitle><stitle>Chromosoma</stitle><addtitle>Chromosoma</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>129</volume><issue>1</issue><spage>69</spage><epage>82</epage><pages>69-82</pages><issn>0009-5915</issn><eissn>1432-0886</eissn><abstract>Long transgenes are often used in mammalian genetics, e.g., to rescue mutations in large genes. In the course of experiments addressing the genetic basis of hybrid sterility caused by meiotic defects in mice bearing different alleles of
Prdm9
, we discovered that introduction of copy-number variation (CNV) via two independent insertions of long transgenes containing incomplete
Prdm9
decreased testicular weight and epididymal sperm count. Transgenic animals displayed increased occurrence of seminiferous tubules with apoptotic cells at 18 days postpartum (dpp) corresponding to late meiotic prophase I, but not at 21 dpp. We hypothesized that long transgene insertions could cause asynapsis, but the immunocytochemical data revealed that the adult transgenic testes carried a similar percentage of asynaptic pachytene spermatocytes as the controls. These transgenic spermatocytes displayed less crossovers but similar numbers of unrepaired meiotic breaks. Despite slightly increased frequency of metaphase I spermatocytes with univalent chromosome(s) and reduced numbers of metaphase II spermatocytes, cytological studies did not reveal increased apoptosis in tubules containing the metaphase spermatocytes, but found an increased percentage of tubules carrying apoptotic spermatids. Sperm counts of subfertile animals inversely correlated with the transcription levels of the
Psmb1
gene encoded within these two transgenes. The effect of the transgenes was dependent on sex and genetic background. Our results imply that the fertility of transgenic hybrid animals is not compromised by the impaired meiotic synapsis of homologous chromosomes, but can be negatively influenced by the increased expression of the introduced genes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31940063</pmid><doi>10.1007/s00412-019-00730-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3243-0825</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-5915 |
ispartof | Chromosoma, 2020-03, Vol.129 (1), p.69-82 |
issn | 0009-5915 1432-0886 |
language | eng |
recordid | cdi_proquest_miscellaneous_2338995315 |
source | Springer Nature |
subjects | Animal Genetics and Genomics Apoptosis Biochemistry Biomedical and Life Sciences Cell Biology Chromosomes Developmental Biology Eukaryotic Microbiology Fertility Human Genetics Life Sciences Meiosis Metaphase Original Article Pachytene Postpartum Prophase Sperm Spermatids Spermatocytes Sterility Transcription Transgenes Transgenic animals Tubules |
title | Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copy-number%20variation%20introduced%20by%20long%20transgenes%20compromises%20mouse%20male%20fertility%20independently%20of%20pachytene%20checkpoints&rft.jtitle=Chromosoma&rft.au=Mihola,%20Ondrej&rft.date=2020-03-01&rft.volume=129&rft.issue=1&rft.spage=69&rft.epage=82&rft.pages=69-82&rft.issn=0009-5915&rft.eissn=1432-0886&rft_id=info:doi/10.1007/s00412-019-00730-8&rft_dat=%3Cproquest_cross%3E2354926364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354926364&rft_id=info:pmid/31940063&rfr_iscdi=true |