Loading…

Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints

Long transgenes are often used in mammalian genetics, e.g., to rescue mutations in large genes. In the course of experiments addressing the genetic basis of hybrid sterility caused by meiotic defects in mice bearing different alleles of Prdm9 , we discovered that introduction of copy-number variatio...

Full description

Saved in:
Bibliographic Details
Published in:Chromosoma 2020-03, Vol.129 (1), p.69-82
Main Authors: Mihola, Ondrej, Kobets, Tatyana, Krivankova, Klara, Linhartova, Eliska, Gasic, Srdjan, Schimenti, John C., Trachtulec, Zdenek
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33
cites cdi_FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33
container_end_page 82
container_issue 1
container_start_page 69
container_title Chromosoma
container_volume 129
creator Mihola, Ondrej
Kobets, Tatyana
Krivankova, Klara
Linhartova, Eliska
Gasic, Srdjan
Schimenti, John C.
Trachtulec, Zdenek
description Long transgenes are often used in mammalian genetics, e.g., to rescue mutations in large genes. In the course of experiments addressing the genetic basis of hybrid sterility caused by meiotic defects in mice bearing different alleles of Prdm9 , we discovered that introduction of copy-number variation (CNV) via two independent insertions of long transgenes containing incomplete Prdm9 decreased testicular weight and epididymal sperm count. Transgenic animals displayed increased occurrence of seminiferous tubules with apoptotic cells at 18 days postpartum (dpp) corresponding to late meiotic prophase I, but not at 21 dpp. We hypothesized that long transgene insertions could cause asynapsis, but the immunocytochemical data revealed that the adult transgenic testes carried a similar percentage of asynaptic pachytene spermatocytes as the controls. These transgenic spermatocytes displayed less crossovers but similar numbers of unrepaired meiotic breaks. Despite slightly increased frequency of metaphase I spermatocytes with univalent chromosome(s) and reduced numbers of metaphase II spermatocytes, cytological studies did not reveal increased apoptosis in tubules containing the metaphase spermatocytes, but found an increased percentage of tubules carrying apoptotic spermatids. Sperm counts of subfertile animals inversely correlated with the transcription levels of the Psmb1 gene encoded within these two transgenes. The effect of the transgenes was dependent on sex and genetic background. Our results imply that the fertility of transgenic hybrid animals is not compromised by the impaired meiotic synapsis of homologous chromosomes, but can be negatively influenced by the increased expression of the introduced genes.
doi_str_mv 10.1007/s00412-019-00730-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2338995315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354926364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33</originalsourceid><addsrcrecordid>eNp9kU-P1SAUxYnROM_RL-DCkLhxU4VCKSzNy_gnmcSNrgmllzcdW6hATRq_vHd8oyYu3AAXfufeEw4hzzl7zRnr3xTGJG8bxk2DpWCNfkAOXAq80lo9JAfGmGk6w7sL8qSU27uyVewxuRDcSMaUOJAfx7TuTdyWATL97vLk6pQinWLNadw8jHTY6ZziidbsYjlBhEJ9WtaclqngeUlbAbq4GWiAXKd5qjvKR1gBl1jnnaZAV-dv9opi6m_Af10TDihPyaPg5gLP7vdL8uXd1efjh-b60_uPx7fXjRd9Vxsleh0kU60chta5ngXdhi5I4ZUzjLvRg4ZgetEPACYoFVqjg-sN770UgxCX5NW5L5r-tkGpFq17mGcXAd3bVghtTCd4h-jLf9DbtOWI7pDqJH6fUBKp9kz5nErJEOyap8Xl3XJm76Kx52gsRmN_RWM1il7ct96GBcY_kt9ZICDOQMGneIL8d_Z_2v4E9secLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354926364</pqid></control><display><type>article</type><title>Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints</title><source>Springer Nature</source><creator>Mihola, Ondrej ; Kobets, Tatyana ; Krivankova, Klara ; Linhartova, Eliska ; Gasic, Srdjan ; Schimenti, John C. ; Trachtulec, Zdenek</creator><creatorcontrib>Mihola, Ondrej ; Kobets, Tatyana ; Krivankova, Klara ; Linhartova, Eliska ; Gasic, Srdjan ; Schimenti, John C. ; Trachtulec, Zdenek</creatorcontrib><description>Long transgenes are often used in mammalian genetics, e.g., to rescue mutations in large genes. In the course of experiments addressing the genetic basis of hybrid sterility caused by meiotic defects in mice bearing different alleles of Prdm9 , we discovered that introduction of copy-number variation (CNV) via two independent insertions of long transgenes containing incomplete Prdm9 decreased testicular weight and epididymal sperm count. Transgenic animals displayed increased occurrence of seminiferous tubules with apoptotic cells at 18 days postpartum (dpp) corresponding to late meiotic prophase I, but not at 21 dpp. We hypothesized that long transgene insertions could cause asynapsis, but the immunocytochemical data revealed that the adult transgenic testes carried a similar percentage of asynaptic pachytene spermatocytes as the controls. These transgenic spermatocytes displayed less crossovers but similar numbers of unrepaired meiotic breaks. Despite slightly increased frequency of metaphase I spermatocytes with univalent chromosome(s) and reduced numbers of metaphase II spermatocytes, cytological studies did not reveal increased apoptosis in tubules containing the metaphase spermatocytes, but found an increased percentage of tubules carrying apoptotic spermatids. Sperm counts of subfertile animals inversely correlated with the transcription levels of the Psmb1 gene encoded within these two transgenes. The effect of the transgenes was dependent on sex and genetic background. Our results imply that the fertility of transgenic hybrid animals is not compromised by the impaired meiotic synapsis of homologous chromosomes, but can be negatively influenced by the increased expression of the introduced genes.</description><identifier>ISSN: 0009-5915</identifier><identifier>EISSN: 1432-0886</identifier><identifier>DOI: 10.1007/s00412-019-00730-8</identifier><identifier>PMID: 31940063</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animal Genetics and Genomics ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Chromosomes ; Developmental Biology ; Eukaryotic Microbiology ; Fertility ; Human Genetics ; Life Sciences ; Meiosis ; Metaphase ; Original Article ; Pachytene ; Postpartum ; Prophase ; Sperm ; Spermatids ; Spermatocytes ; Sterility ; Transcription ; Transgenes ; Transgenic animals ; Tubules</subject><ispartof>Chromosoma, 2020-03, Vol.129 (1), p.69-82</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Chromosoma is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33</citedby><cites>FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33</cites><orcidid>0000-0003-3243-0825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31940063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mihola, Ondrej</creatorcontrib><creatorcontrib>Kobets, Tatyana</creatorcontrib><creatorcontrib>Krivankova, Klara</creatorcontrib><creatorcontrib>Linhartova, Eliska</creatorcontrib><creatorcontrib>Gasic, Srdjan</creatorcontrib><creatorcontrib>Schimenti, John C.</creatorcontrib><creatorcontrib>Trachtulec, Zdenek</creatorcontrib><title>Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints</title><title>Chromosoma</title><addtitle>Chromosoma</addtitle><addtitle>Chromosoma</addtitle><description>Long transgenes are often used in mammalian genetics, e.g., to rescue mutations in large genes. In the course of experiments addressing the genetic basis of hybrid sterility caused by meiotic defects in mice bearing different alleles of Prdm9 , we discovered that introduction of copy-number variation (CNV) via two independent insertions of long transgenes containing incomplete Prdm9 decreased testicular weight and epididymal sperm count. Transgenic animals displayed increased occurrence of seminiferous tubules with apoptotic cells at 18 days postpartum (dpp) corresponding to late meiotic prophase I, but not at 21 dpp. We hypothesized that long transgene insertions could cause asynapsis, but the immunocytochemical data revealed that the adult transgenic testes carried a similar percentage of asynaptic pachytene spermatocytes as the controls. These transgenic spermatocytes displayed less crossovers but similar numbers of unrepaired meiotic breaks. Despite slightly increased frequency of metaphase I spermatocytes with univalent chromosome(s) and reduced numbers of metaphase II spermatocytes, cytological studies did not reveal increased apoptosis in tubules containing the metaphase spermatocytes, but found an increased percentage of tubules carrying apoptotic spermatids. Sperm counts of subfertile animals inversely correlated with the transcription levels of the Psmb1 gene encoded within these two transgenes. The effect of the transgenes was dependent on sex and genetic background. Our results imply that the fertility of transgenic hybrid animals is not compromised by the impaired meiotic synapsis of homologous chromosomes, but can be negatively influenced by the increased expression of the introduced genes.</description><subject>Animal Genetics and Genomics</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Chromosomes</subject><subject>Developmental Biology</subject><subject>Eukaryotic Microbiology</subject><subject>Fertility</subject><subject>Human Genetics</subject><subject>Life Sciences</subject><subject>Meiosis</subject><subject>Metaphase</subject><subject>Original Article</subject><subject>Pachytene</subject><subject>Postpartum</subject><subject>Prophase</subject><subject>Sperm</subject><subject>Spermatids</subject><subject>Spermatocytes</subject><subject>Sterility</subject><subject>Transcription</subject><subject>Transgenes</subject><subject>Transgenic animals</subject><subject>Tubules</subject><issn>0009-5915</issn><issn>1432-0886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU-P1SAUxYnROM_RL-DCkLhxU4VCKSzNy_gnmcSNrgmllzcdW6hATRq_vHd8oyYu3AAXfufeEw4hzzl7zRnr3xTGJG8bxk2DpWCNfkAOXAq80lo9JAfGmGk6w7sL8qSU27uyVewxuRDcSMaUOJAfx7TuTdyWATL97vLk6pQinWLNadw8jHTY6ZziidbsYjlBhEJ9WtaclqngeUlbAbq4GWiAXKd5qjvKR1gBl1jnnaZAV-dv9opi6m_Af10TDihPyaPg5gLP7vdL8uXd1efjh-b60_uPx7fXjRd9Vxsleh0kU60chta5ngXdhi5I4ZUzjLvRg4ZgetEPACYoFVqjg-sN770UgxCX5NW5L5r-tkGpFq17mGcXAd3bVghtTCd4h-jLf9DbtOWI7pDqJH6fUBKp9kz5nErJEOyap8Xl3XJm76Kx52gsRmN_RWM1il7ct96GBcY_kt9ZICDOQMGneIL8d_Z_2v4E9secLA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Mihola, Ondrej</creator><creator>Kobets, Tatyana</creator><creator>Krivankova, Klara</creator><creator>Linhartova, Eliska</creator><creator>Gasic, Srdjan</creator><creator>Schimenti, John C.</creator><creator>Trachtulec, Zdenek</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3243-0825</orcidid></search><sort><creationdate>20200301</creationdate><title>Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints</title><author>Mihola, Ondrej ; Kobets, Tatyana ; Krivankova, Klara ; Linhartova, Eliska ; Gasic, Srdjan ; Schimenti, John C. ; Trachtulec, Zdenek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal Genetics and Genomics</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Chromosomes</topic><topic>Developmental Biology</topic><topic>Eukaryotic Microbiology</topic><topic>Fertility</topic><topic>Human Genetics</topic><topic>Life Sciences</topic><topic>Meiosis</topic><topic>Metaphase</topic><topic>Original Article</topic><topic>Pachytene</topic><topic>Postpartum</topic><topic>Prophase</topic><topic>Sperm</topic><topic>Spermatids</topic><topic>Spermatocytes</topic><topic>Sterility</topic><topic>Transcription</topic><topic>Transgenes</topic><topic>Transgenic animals</topic><topic>Tubules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mihola, Ondrej</creatorcontrib><creatorcontrib>Kobets, Tatyana</creatorcontrib><creatorcontrib>Krivankova, Klara</creatorcontrib><creatorcontrib>Linhartova, Eliska</creatorcontrib><creatorcontrib>Gasic, Srdjan</creatorcontrib><creatorcontrib>Schimenti, John C.</creatorcontrib><creatorcontrib>Trachtulec, Zdenek</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chromosoma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mihola, Ondrej</au><au>Kobets, Tatyana</au><au>Krivankova, Klara</au><au>Linhartova, Eliska</au><au>Gasic, Srdjan</au><au>Schimenti, John C.</au><au>Trachtulec, Zdenek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints</atitle><jtitle>Chromosoma</jtitle><stitle>Chromosoma</stitle><addtitle>Chromosoma</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>129</volume><issue>1</issue><spage>69</spage><epage>82</epage><pages>69-82</pages><issn>0009-5915</issn><eissn>1432-0886</eissn><abstract>Long transgenes are often used in mammalian genetics, e.g., to rescue mutations in large genes. In the course of experiments addressing the genetic basis of hybrid sterility caused by meiotic defects in mice bearing different alleles of Prdm9 , we discovered that introduction of copy-number variation (CNV) via two independent insertions of long transgenes containing incomplete Prdm9 decreased testicular weight and epididymal sperm count. Transgenic animals displayed increased occurrence of seminiferous tubules with apoptotic cells at 18 days postpartum (dpp) corresponding to late meiotic prophase I, but not at 21 dpp. We hypothesized that long transgene insertions could cause asynapsis, but the immunocytochemical data revealed that the adult transgenic testes carried a similar percentage of asynaptic pachytene spermatocytes as the controls. These transgenic spermatocytes displayed less crossovers but similar numbers of unrepaired meiotic breaks. Despite slightly increased frequency of metaphase I spermatocytes with univalent chromosome(s) and reduced numbers of metaphase II spermatocytes, cytological studies did not reveal increased apoptosis in tubules containing the metaphase spermatocytes, but found an increased percentage of tubules carrying apoptotic spermatids. Sperm counts of subfertile animals inversely correlated with the transcription levels of the Psmb1 gene encoded within these two transgenes. The effect of the transgenes was dependent on sex and genetic background. Our results imply that the fertility of transgenic hybrid animals is not compromised by the impaired meiotic synapsis of homologous chromosomes, but can be negatively influenced by the increased expression of the introduced genes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31940063</pmid><doi>10.1007/s00412-019-00730-8</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3243-0825</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0009-5915
ispartof Chromosoma, 2020-03, Vol.129 (1), p.69-82
issn 0009-5915
1432-0886
language eng
recordid cdi_proquest_miscellaneous_2338995315
source Springer Nature
subjects Animal Genetics and Genomics
Apoptosis
Biochemistry
Biomedical and Life Sciences
Cell Biology
Chromosomes
Developmental Biology
Eukaryotic Microbiology
Fertility
Human Genetics
Life Sciences
Meiosis
Metaphase
Original Article
Pachytene
Postpartum
Prophase
Sperm
Spermatids
Spermatocytes
Sterility
Transcription
Transgenes
Transgenic animals
Tubules
title Copy-number variation introduced by long transgenes compromises mouse male fertility independently of pachytene checkpoints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A37%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Copy-number%20variation%20introduced%20by%20long%20transgenes%20compromises%20mouse%20male%20fertility%20independently%20of%20pachytene%20checkpoints&rft.jtitle=Chromosoma&rft.au=Mihola,%20Ondrej&rft.date=2020-03-01&rft.volume=129&rft.issue=1&rft.spage=69&rft.epage=82&rft.pages=69-82&rft.issn=0009-5915&rft.eissn=1432-0886&rft_id=info:doi/10.1007/s00412-019-00730-8&rft_dat=%3Cproquest_cross%3E2354926364%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-6378f40624bb2aa70f82f5f43c6a901adce8ef9737bee9f66f298fa7917c43b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354926364&rft_id=info:pmid/31940063&rfr_iscdi=true