Loading…
A Cobalt‐Free Multi‐Phase Nanocomposite as Near‐Ideal Cathode of Intermediate‐Temperature Solid Oxide Fuel Cells Developed by Smart Self‐Assembly
An ideal solid oxide fuel cell (SOFC) cathode should meet multiple requirements, i.e., high activity for oxygen reduction reaction (ORR), good conductivity, favorable stability, and sound thermo‐mechanical/chemical compatibility with electrolyte, while it is very challenging to achieve all these req...
Saved in:
Published in: | Advanced materials (Weinheim) 2020-02, Vol.32 (8), p.e1906979-n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An ideal solid oxide fuel cell (SOFC) cathode should meet multiple requirements, i.e., high activity for oxygen reduction reaction (ORR), good conductivity, favorable stability, and sound thermo‐mechanical/chemical compatibility with electrolyte, while it is very challenging to achieve all these requirements based on a single‐phase material. Herein, a cost‐effective multi‐phase nanocomposite, facilely synthesized through smart self‐assembly at high temperature, is developed as a near‐ideal cathode of intermediate‐temperature SOFCs, showing high ORR activity (an area‐specific resistance of ≈0.028 Ω cm2 and a power output of 1208 mW cm−2 at 650 °C), affordable conductivity (21.5 S cm−1 at 650 °C), favorable stability (560 h operation in single cell), excellent chemical compatibility with Sm0.2Ce0.8O1.9 electrolyte, and reduced thermal expansion coefficient (≈16.8 × 10−6 K−1). Such a nanocomposite (Sr0.9Ce0.1Fe0.8Ni0.2O3–δ) is composed of a single perovskite main phase (77.2 wt%), a Ruddlesden–Popper (RP) second phase (13.3 wt%), and surface‐decorated NiO (5.8 wt%) and CeO2 (3.7 wt%) minor phases. The RP phase promotes the oxygen bulk diffusion while NiO and CeO2 nanoparticles facilitate the oxygen surface process and O2− migration from the surface to the main phase, respectively. The strong interaction between four phases in nanodomain creates a synergistic effect, leading to the superior ORR activity.
A cobalt‐free multi‐phase nanocomposite with a superior electrochemical activity for oxygen reduction is developed as a near‐ideal cathode of intermediate‐temperature solid oxide fuel cells (SOFCs) via a smart self‐assembly strategy. Sr0.9Ce0.1Fe0.8Ni0.2O3–δ is a highly promising cathode material for SOFCs, suitable for the efficient and stable operation at the intermediate‐temperature range. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.201906979 |