Loading…
IRIS: A Modular Platform for Continuous Monitoring and Caretaker Notification in the Intensive Care Unit
Objective: New approaches are needed to interpret large amounts of physiologic data continuously recorded in the ICU. We developed and prospectively validated a versatile platform (IRIS) for real-time ICU physiologic monitoring, clinical decision making, and caretaker notification. Methods: IRIS was...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2020-08, Vol.24 (8), p.2389-2397 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3 |
container_end_page | 2397 |
container_issue | 8 |
container_start_page | 2389 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 24 |
creator | Baldassano, Steven N. Roberson, Shawniqua Williams Balu, Ramani Scheid, Brittany Bernabei, John M. Pathmanathan, Jay Oommen, Brian Leri, Damien Echauz, Javier Gelfand, Michael Bhalla, Paulomi Kadakia Hill, Chloe E. Christini, Amanda Wagenaar, Joost B. Litt, Brian |
description | Objective: New approaches are needed to interpret large amounts of physiologic data continuously recorded in the ICU. We developed and prospectively validated a versatile platform (IRIS) for real-time ICU physiologic monitoring, clinical decision making, and caretaker notification. Methods: IRIS was implemented in the neurointensive care unit to stream multimodal time series data, including EEG, intracranial pressure (ICP), and brain tissue oxygenation (P bt O 2 ), from ICU monitors to an analysis server. IRIS was applied for 364 patients undergoing continuous EEG, 26 patients undergoing burst suppression monitoring, and four patients undergoing intracranial pressure and brain tissue oxygen monitoring. Custom algorithms were used to identify periods of elevated ICP, compute burst suppression ratios (BSRs), and detect faulty or disconnected EEG electrodes. Hospital staff were notified of clinically relevant events using our secure API to route alerts through a password-protected smartphone application. Results: Sustained increases in ICP and concordant decreases in P bt O 2 were reliably detected using user-defined thresholds and alert throttling. BSR trends computed by the platform correlated highly with manual neurologist markings (r 2 0.633-0.781; p < 0.0001). The platform identified EEG electrodes with poor signal quality with 95% positive predictive value, and reduced latency of technician response by 93%. Conclusion: This study validates a flexible real-time platform for monitoring and interpreting ICU data and notifying caretakers of actionable results, with potential to reduce the manual burden of continuous monitoring services on care providers. Significance: This work represents an important step toward facilitating translational medical data analytics to improve patient care and reduce health care costs. |
doi_str_mv | 10.1109/JBHI.2020.2965858 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339792321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8957147</ieee_id><sourcerecordid>2339792321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3</originalsourceid><addsrcrecordid>eNpdkV1vFCEUhonR2Kb2BxgTQ-KNN7vyMcyAFyZ1o3ZM_Yjaa8LAmS51FlpgmvjvZd3tRuUCyDnP-4bDi9BTSpaUEvXq49vzfskII0umWiGFfICOGW3lgjEiH97fqWqO0GnO16QuWUuqfYyOeC0T0cpjtO6_9d9f4zP8Kbp5Mgl_nUwZY9rguuFVDMWHOc659oMvMflwhU1weGUSFPMTEv4cix-9NcXHgH3AZQ24DwVC9nfwh8OXVfoEPRrNlOF0f56gy_fvfqzOFxdfPvSrs4uFbZquLJyjzsjBSsmVMx3vGB-UpZLAMEo6GMndMI7CWtE4wY0g3NhBuEHxRgFtLT9Bb3a-N_OwAWchlGQmfZP8xqRfOhqv_-0Ev9ZX8U53jRQtkdXg5d4gxdsZctEbny1MkwlQP0IzzlWnGGe0oi_-Q6_jnEIdT7OGUyKlYqRSdEfZFHNOMB4eQ4neRqm3UeptlHofZdU8_3uKg-I-uAo82wEeAA5tqURHm47_Bs7Qo7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431088920</pqid></control><display><type>article</type><title>IRIS: A Modular Platform for Continuous Monitoring and Caretaker Notification in the Intensive Care Unit</title><source>IEEE Xplore (Online service)</source><creator>Baldassano, Steven N. ; Roberson, Shawniqua Williams ; Balu, Ramani ; Scheid, Brittany ; Bernabei, John M. ; Pathmanathan, Jay ; Oommen, Brian ; Leri, Damien ; Echauz, Javier ; Gelfand, Michael ; Bhalla, Paulomi Kadakia ; Hill, Chloe E. ; Christini, Amanda ; Wagenaar, Joost B. ; Litt, Brian</creator><creatorcontrib>Baldassano, Steven N. ; Roberson, Shawniqua Williams ; Balu, Ramani ; Scheid, Brittany ; Bernabei, John M. ; Pathmanathan, Jay ; Oommen, Brian ; Leri, Damien ; Echauz, Javier ; Gelfand, Michael ; Bhalla, Paulomi Kadakia ; Hill, Chloe E. ; Christini, Amanda ; Wagenaar, Joost B. ; Litt, Brian</creatorcontrib><description>Objective: New approaches are needed to interpret large amounts of physiologic data continuously recorded in the ICU. We developed and prospectively validated a versatile platform (IRIS) for real-time ICU physiologic monitoring, clinical decision making, and caretaker notification. Methods: IRIS was implemented in the neurointensive care unit to stream multimodal time series data, including EEG, intracranial pressure (ICP), and brain tissue oxygenation (P bt O 2 ), from ICU monitors to an analysis server. IRIS was applied for 364 patients undergoing continuous EEG, 26 patients undergoing burst suppression monitoring, and four patients undergoing intracranial pressure and brain tissue oxygen monitoring. Custom algorithms were used to identify periods of elevated ICP, compute burst suppression ratios (BSRs), and detect faulty or disconnected EEG electrodes. Hospital staff were notified of clinically relevant events using our secure API to route alerts through a password-protected smartphone application. Results: Sustained increases in ICP and concordant decreases in P bt O 2 were reliably detected using user-defined thresholds and alert throttling. BSR trends computed by the platform correlated highly with manual neurologist markings (r 2 0.633-0.781; p < 0.0001). The platform identified EEG electrodes with poor signal quality with 95% positive predictive value, and reduced latency of technician response by 93%. Conclusion: This study validates a flexible real-time platform for monitoring and interpreting ICU data and notifying caretakers of actionable results, with potential to reduce the manual burden of continuous monitoring services on care providers. Significance: This work represents an important step toward facilitating translational medical data analytics to improve patient care and reduce health care costs.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2020.2965858</identifier><identifier>PMID: 31940568</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithms ; Automated data analysis ; Biomedical monitoring ; Brain ; Brain Chemistry - physiology ; Clinical decision making ; Continuous data monitoring ; Cost analysis ; Critical Care - methods ; Decision making ; Diagnosis, Computer-Assisted - methods ; EEG ; Electrodes ; Electroencephalography ; Electroencephalography - methods ; Humans ; Intensive care ; Intensive care unit ; Intensive Care Units ; Intracranial pressure ; Intracranial Pressure - physiology ; Iris ; Latency ; Monitoring ; Monitoring, Physiologic - methods ; Multimodal data ; Neurology ; Oximetry - methods ; Oxygenation ; Patients ; Real time ; Signal Processing, Computer-Assisted ; Signal quality ; Telemedicine ; Throttling</subject><ispartof>IEEE journal of biomedical and health informatics, 2020-08, Vol.24 (8), p.2389-2397</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3</citedby><cites>FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3</cites><orcidid>0000-0003-1331-380X ; 0000-0001-5545-4278 ; 0000-0002-0291-1567 ; 0000-0003-0837-7120 ; 0000-0002-1414-7041 ; 0000-0002-4816-8756 ; 0000-0002-8528-0085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8957147$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31940568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baldassano, Steven N.</creatorcontrib><creatorcontrib>Roberson, Shawniqua Williams</creatorcontrib><creatorcontrib>Balu, Ramani</creatorcontrib><creatorcontrib>Scheid, Brittany</creatorcontrib><creatorcontrib>Bernabei, John M.</creatorcontrib><creatorcontrib>Pathmanathan, Jay</creatorcontrib><creatorcontrib>Oommen, Brian</creatorcontrib><creatorcontrib>Leri, Damien</creatorcontrib><creatorcontrib>Echauz, Javier</creatorcontrib><creatorcontrib>Gelfand, Michael</creatorcontrib><creatorcontrib>Bhalla, Paulomi Kadakia</creatorcontrib><creatorcontrib>Hill, Chloe E.</creatorcontrib><creatorcontrib>Christini, Amanda</creatorcontrib><creatorcontrib>Wagenaar, Joost B.</creatorcontrib><creatorcontrib>Litt, Brian</creatorcontrib><title>IRIS: A Modular Platform for Continuous Monitoring and Caretaker Notification in the Intensive Care Unit</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Objective: New approaches are needed to interpret large amounts of physiologic data continuously recorded in the ICU. We developed and prospectively validated a versatile platform (IRIS) for real-time ICU physiologic monitoring, clinical decision making, and caretaker notification. Methods: IRIS was implemented in the neurointensive care unit to stream multimodal time series data, including EEG, intracranial pressure (ICP), and brain tissue oxygenation (P bt O 2 ), from ICU monitors to an analysis server. IRIS was applied for 364 patients undergoing continuous EEG, 26 patients undergoing burst suppression monitoring, and four patients undergoing intracranial pressure and brain tissue oxygen monitoring. Custom algorithms were used to identify periods of elevated ICP, compute burst suppression ratios (BSRs), and detect faulty or disconnected EEG electrodes. Hospital staff were notified of clinically relevant events using our secure API to route alerts through a password-protected smartphone application. Results: Sustained increases in ICP and concordant decreases in P bt O 2 were reliably detected using user-defined thresholds and alert throttling. BSR trends computed by the platform correlated highly with manual neurologist markings (r 2 0.633-0.781; p < 0.0001). The platform identified EEG electrodes with poor signal quality with 95% positive predictive value, and reduced latency of technician response by 93%. Conclusion: This study validates a flexible real-time platform for monitoring and interpreting ICU data and notifying caretakers of actionable results, with potential to reduce the manual burden of continuous monitoring services on care providers. Significance: This work represents an important step toward facilitating translational medical data analytics to improve patient care and reduce health care costs.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Automated data analysis</subject><subject>Biomedical monitoring</subject><subject>Brain</subject><subject>Brain Chemistry - physiology</subject><subject>Clinical decision making</subject><subject>Continuous data monitoring</subject><subject>Cost analysis</subject><subject>Critical Care - methods</subject><subject>Decision making</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Humans</subject><subject>Intensive care</subject><subject>Intensive care unit</subject><subject>Intensive Care Units</subject><subject>Intracranial pressure</subject><subject>Intracranial Pressure - physiology</subject><subject>Iris</subject><subject>Latency</subject><subject>Monitoring</subject><subject>Monitoring, Physiologic - methods</subject><subject>Multimodal data</subject><subject>Neurology</subject><subject>Oximetry - methods</subject><subject>Oxygenation</subject><subject>Patients</subject><subject>Real time</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal quality</subject><subject>Telemedicine</subject><subject>Throttling</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkV1vFCEUhonR2Kb2BxgTQ-KNN7vyMcyAFyZ1o3ZM_Yjaa8LAmS51FlpgmvjvZd3tRuUCyDnP-4bDi9BTSpaUEvXq49vzfskII0umWiGFfICOGW3lgjEiH97fqWqO0GnO16QuWUuqfYyOeC0T0cpjtO6_9d9f4zP8Kbp5Mgl_nUwZY9rguuFVDMWHOc659oMvMflwhU1weGUSFPMTEv4cix-9NcXHgH3AZQ24DwVC9nfwh8OXVfoEPRrNlOF0f56gy_fvfqzOFxdfPvSrs4uFbZquLJyjzsjBSsmVMx3vGB-UpZLAMEo6GMndMI7CWtE4wY0g3NhBuEHxRgFtLT9Bb3a-N_OwAWchlGQmfZP8xqRfOhqv_-0Ev9ZX8U53jRQtkdXg5d4gxdsZctEbny1MkwlQP0IzzlWnGGe0oi_-Q6_jnEIdT7OGUyKlYqRSdEfZFHNOMB4eQ4neRqm3UeptlHofZdU8_3uKg-I-uAo82wEeAA5tqURHm47_Bs7Qo7Y</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Baldassano, Steven N.</creator><creator>Roberson, Shawniqua Williams</creator><creator>Balu, Ramani</creator><creator>Scheid, Brittany</creator><creator>Bernabei, John M.</creator><creator>Pathmanathan, Jay</creator><creator>Oommen, Brian</creator><creator>Leri, Damien</creator><creator>Echauz, Javier</creator><creator>Gelfand, Michael</creator><creator>Bhalla, Paulomi Kadakia</creator><creator>Hill, Chloe E.</creator><creator>Christini, Amanda</creator><creator>Wagenaar, Joost B.</creator><creator>Litt, Brian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1331-380X</orcidid><orcidid>https://orcid.org/0000-0001-5545-4278</orcidid><orcidid>https://orcid.org/0000-0002-0291-1567</orcidid><orcidid>https://orcid.org/0000-0003-0837-7120</orcidid><orcidid>https://orcid.org/0000-0002-1414-7041</orcidid><orcidid>https://orcid.org/0000-0002-4816-8756</orcidid><orcidid>https://orcid.org/0000-0002-8528-0085</orcidid></search><sort><creationdate>20200801</creationdate><title>IRIS: A Modular Platform for Continuous Monitoring and Caretaker Notification in the Intensive Care Unit</title><author>Baldassano, Steven N. ; Roberson, Shawniqua Williams ; Balu, Ramani ; Scheid, Brittany ; Bernabei, John M. ; Pathmanathan, Jay ; Oommen, Brian ; Leri, Damien ; Echauz, Javier ; Gelfand, Michael ; Bhalla, Paulomi Kadakia ; Hill, Chloe E. ; Christini, Amanda ; Wagenaar, Joost B. ; Litt, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Automated data analysis</topic><topic>Biomedical monitoring</topic><topic>Brain</topic><topic>Brain Chemistry - physiology</topic><topic>Clinical decision making</topic><topic>Continuous data monitoring</topic><topic>Cost analysis</topic><topic>Critical Care - methods</topic><topic>Decision making</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Humans</topic><topic>Intensive care</topic><topic>Intensive care unit</topic><topic>Intensive Care Units</topic><topic>Intracranial pressure</topic><topic>Intracranial Pressure - physiology</topic><topic>Iris</topic><topic>Latency</topic><topic>Monitoring</topic><topic>Monitoring, Physiologic - methods</topic><topic>Multimodal data</topic><topic>Neurology</topic><topic>Oximetry - methods</topic><topic>Oxygenation</topic><topic>Patients</topic><topic>Real time</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal quality</topic><topic>Telemedicine</topic><topic>Throttling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldassano, Steven N.</creatorcontrib><creatorcontrib>Roberson, Shawniqua Williams</creatorcontrib><creatorcontrib>Balu, Ramani</creatorcontrib><creatorcontrib>Scheid, Brittany</creatorcontrib><creatorcontrib>Bernabei, John M.</creatorcontrib><creatorcontrib>Pathmanathan, Jay</creatorcontrib><creatorcontrib>Oommen, Brian</creatorcontrib><creatorcontrib>Leri, Damien</creatorcontrib><creatorcontrib>Echauz, Javier</creatorcontrib><creatorcontrib>Gelfand, Michael</creatorcontrib><creatorcontrib>Bhalla, Paulomi Kadakia</creatorcontrib><creatorcontrib>Hill, Chloe E.</creatorcontrib><creatorcontrib>Christini, Amanda</creatorcontrib><creatorcontrib>Wagenaar, Joost B.</creatorcontrib><creatorcontrib>Litt, Brian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldassano, Steven N.</au><au>Roberson, Shawniqua Williams</au><au>Balu, Ramani</au><au>Scheid, Brittany</au><au>Bernabei, John M.</au><au>Pathmanathan, Jay</au><au>Oommen, Brian</au><au>Leri, Damien</au><au>Echauz, Javier</au><au>Gelfand, Michael</au><au>Bhalla, Paulomi Kadakia</au><au>Hill, Chloe E.</au><au>Christini, Amanda</au><au>Wagenaar, Joost B.</au><au>Litt, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IRIS: A Modular Platform for Continuous Monitoring and Caretaker Notification in the Intensive Care Unit</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>24</volume><issue>8</issue><spage>2389</spage><epage>2397</epage><pages>2389-2397</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Objective: New approaches are needed to interpret large amounts of physiologic data continuously recorded in the ICU. We developed and prospectively validated a versatile platform (IRIS) for real-time ICU physiologic monitoring, clinical decision making, and caretaker notification. Methods: IRIS was implemented in the neurointensive care unit to stream multimodal time series data, including EEG, intracranial pressure (ICP), and brain tissue oxygenation (P bt O 2 ), from ICU monitors to an analysis server. IRIS was applied for 364 patients undergoing continuous EEG, 26 patients undergoing burst suppression monitoring, and four patients undergoing intracranial pressure and brain tissue oxygen monitoring. Custom algorithms were used to identify periods of elevated ICP, compute burst suppression ratios (BSRs), and detect faulty or disconnected EEG electrodes. Hospital staff were notified of clinically relevant events using our secure API to route alerts through a password-protected smartphone application. Results: Sustained increases in ICP and concordant decreases in P bt O 2 were reliably detected using user-defined thresholds and alert throttling. BSR trends computed by the platform correlated highly with manual neurologist markings (r 2 0.633-0.781; p < 0.0001). The platform identified EEG electrodes with poor signal quality with 95% positive predictive value, and reduced latency of technician response by 93%. Conclusion: This study validates a flexible real-time platform for monitoring and interpreting ICU data and notifying caretakers of actionable results, with potential to reduce the manual burden of continuous monitoring services on care providers. Significance: This work represents an important step toward facilitating translational medical data analytics to improve patient care and reduce health care costs.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31940568</pmid><doi>10.1109/JBHI.2020.2965858</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1331-380X</orcidid><orcidid>https://orcid.org/0000-0001-5545-4278</orcidid><orcidid>https://orcid.org/0000-0002-0291-1567</orcidid><orcidid>https://orcid.org/0000-0003-0837-7120</orcidid><orcidid>https://orcid.org/0000-0002-1414-7041</orcidid><orcidid>https://orcid.org/0000-0002-4816-8756</orcidid><orcidid>https://orcid.org/0000-0002-8528-0085</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2020-08, Vol.24 (8), p.2389-2397 |
issn | 2168-2194 2168-2208 |
language | eng |
recordid | cdi_proquest_miscellaneous_2339792321 |
source | IEEE Xplore (Online service) |
subjects | Adult Algorithms Automated data analysis Biomedical monitoring Brain Brain Chemistry - physiology Clinical decision making Continuous data monitoring Cost analysis Critical Care - methods Decision making Diagnosis, Computer-Assisted - methods EEG Electrodes Electroencephalography Electroencephalography - methods Humans Intensive care Intensive care unit Intensive Care Units Intracranial pressure Intracranial Pressure - physiology Iris Latency Monitoring Monitoring, Physiologic - methods Multimodal data Neurology Oximetry - methods Oxygenation Patients Real time Signal Processing, Computer-Assisted Signal quality Telemedicine Throttling |
title | IRIS: A Modular Platform for Continuous Monitoring and Caretaker Notification in the Intensive Care Unit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IRIS:%20A%20Modular%20Platform%20for%20Continuous%20Monitoring%20and%20Caretaker%20Notification%20in%20the%20Intensive%20Care%20Unit&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Baldassano,%20Steven%20N.&rft.date=2020-08-01&rft.volume=24&rft.issue=8&rft.spage=2389&rft.epage=2397&rft.pages=2389-2397&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2020.2965858&rft_dat=%3Cproquest_pubme%3E2339792321%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2431088920&rft_id=info:pmid/31940568&rft_ieee_id=8957147&rfr_iscdi=true |