Loading…

IRIS: A Modular Platform for Continuous Monitoring and Caretaker Notification in the Intensive Care Unit

Objective: New approaches are needed to interpret large amounts of physiologic data continuously recorded in the ICU. We developed and prospectively validated a versatile platform (IRIS) for real-time ICU physiologic monitoring, clinical decision making, and caretaker notification. Methods: IRIS was...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics 2020-08, Vol.24 (8), p.2389-2397
Main Authors: Baldassano, Steven N., Roberson, Shawniqua Williams, Balu, Ramani, Scheid, Brittany, Bernabei, John M., Pathmanathan, Jay, Oommen, Brian, Leri, Damien, Echauz, Javier, Gelfand, Michael, Bhalla, Paulomi Kadakia, Hill, Chloe E., Christini, Amanda, Wagenaar, Joost B., Litt, Brian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3
cites cdi_FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3
container_end_page 2397
container_issue 8
container_start_page 2389
container_title IEEE journal of biomedical and health informatics
container_volume 24
creator Baldassano, Steven N.
Roberson, Shawniqua Williams
Balu, Ramani
Scheid, Brittany
Bernabei, John M.
Pathmanathan, Jay
Oommen, Brian
Leri, Damien
Echauz, Javier
Gelfand, Michael
Bhalla, Paulomi Kadakia
Hill, Chloe E.
Christini, Amanda
Wagenaar, Joost B.
Litt, Brian
description Objective: New approaches are needed to interpret large amounts of physiologic data continuously recorded in the ICU. We developed and prospectively validated a versatile platform (IRIS) for real-time ICU physiologic monitoring, clinical decision making, and caretaker notification. Methods: IRIS was implemented in the neurointensive care unit to stream multimodal time series data, including EEG, intracranial pressure (ICP), and brain tissue oxygenation (P bt O 2 ), from ICU monitors to an analysis server. IRIS was applied for 364 patients undergoing continuous EEG, 26 patients undergoing burst suppression monitoring, and four patients undergoing intracranial pressure and brain tissue oxygen monitoring. Custom algorithms were used to identify periods of elevated ICP, compute burst suppression ratios (BSRs), and detect faulty or disconnected EEG electrodes. Hospital staff were notified of clinically relevant events using our secure API to route alerts through a password-protected smartphone application. Results: Sustained increases in ICP and concordant decreases in P bt O 2 were reliably detected using user-defined thresholds and alert throttling. BSR trends computed by the platform correlated highly with manual neurologist markings (r 2  0.633-0.781; p < 0.0001). The platform identified EEG electrodes with poor signal quality with 95% positive predictive value, and reduced latency of technician response by 93%. Conclusion: This study validates a flexible real-time platform for monitoring and interpreting ICU data and notifying caretakers of actionable results, with potential to reduce the manual burden of continuous monitoring services on care providers. Significance: This work represents an important step toward facilitating translational medical data analytics to improve patient care and reduce health care costs.
doi_str_mv 10.1109/JBHI.2020.2965858
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339792321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8957147</ieee_id><sourcerecordid>2339792321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3</originalsourceid><addsrcrecordid>eNpdkV1vFCEUhonR2Kb2BxgTQ-KNN7vyMcyAFyZ1o3ZM_Yjaa8LAmS51FlpgmvjvZd3tRuUCyDnP-4bDi9BTSpaUEvXq49vzfskII0umWiGFfICOGW3lgjEiH97fqWqO0GnO16QuWUuqfYyOeC0T0cpjtO6_9d9f4zP8Kbp5Mgl_nUwZY9rguuFVDMWHOc659oMvMflwhU1weGUSFPMTEv4cix-9NcXHgH3AZQ24DwVC9nfwh8OXVfoEPRrNlOF0f56gy_fvfqzOFxdfPvSrs4uFbZquLJyjzsjBSsmVMx3vGB-UpZLAMEo6GMndMI7CWtE4wY0g3NhBuEHxRgFtLT9Bb3a-N_OwAWchlGQmfZP8xqRfOhqv_-0Ev9ZX8U53jRQtkdXg5d4gxdsZctEbny1MkwlQP0IzzlWnGGe0oi_-Q6_jnEIdT7OGUyKlYqRSdEfZFHNOMB4eQ4neRqm3UeptlHofZdU8_3uKg-I-uAo82wEeAA5tqURHm47_Bs7Qo7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431088920</pqid></control><display><type>article</type><title>IRIS: A Modular Platform for Continuous Monitoring and Caretaker Notification in the Intensive Care Unit</title><source>IEEE Xplore (Online service)</source><creator>Baldassano, Steven N. ; Roberson, Shawniqua Williams ; Balu, Ramani ; Scheid, Brittany ; Bernabei, John M. ; Pathmanathan, Jay ; Oommen, Brian ; Leri, Damien ; Echauz, Javier ; Gelfand, Michael ; Bhalla, Paulomi Kadakia ; Hill, Chloe E. ; Christini, Amanda ; Wagenaar, Joost B. ; Litt, Brian</creator><creatorcontrib>Baldassano, Steven N. ; Roberson, Shawniqua Williams ; Balu, Ramani ; Scheid, Brittany ; Bernabei, John M. ; Pathmanathan, Jay ; Oommen, Brian ; Leri, Damien ; Echauz, Javier ; Gelfand, Michael ; Bhalla, Paulomi Kadakia ; Hill, Chloe E. ; Christini, Amanda ; Wagenaar, Joost B. ; Litt, Brian</creatorcontrib><description>Objective: New approaches are needed to interpret large amounts of physiologic data continuously recorded in the ICU. We developed and prospectively validated a versatile platform (IRIS) for real-time ICU physiologic monitoring, clinical decision making, and caretaker notification. Methods: IRIS was implemented in the neurointensive care unit to stream multimodal time series data, including EEG, intracranial pressure (ICP), and brain tissue oxygenation (P bt O 2 ), from ICU monitors to an analysis server. IRIS was applied for 364 patients undergoing continuous EEG, 26 patients undergoing burst suppression monitoring, and four patients undergoing intracranial pressure and brain tissue oxygen monitoring. Custom algorithms were used to identify periods of elevated ICP, compute burst suppression ratios (BSRs), and detect faulty or disconnected EEG electrodes. Hospital staff were notified of clinically relevant events using our secure API to route alerts through a password-protected smartphone application. Results: Sustained increases in ICP and concordant decreases in P bt O 2 were reliably detected using user-defined thresholds and alert throttling. BSR trends computed by the platform correlated highly with manual neurologist markings (r 2  0.633-0.781; p &lt; 0.0001). The platform identified EEG electrodes with poor signal quality with 95% positive predictive value, and reduced latency of technician response by 93%. Conclusion: This study validates a flexible real-time platform for monitoring and interpreting ICU data and notifying caretakers of actionable results, with potential to reduce the manual burden of continuous monitoring services on care providers. Significance: This work represents an important step toward facilitating translational medical data analytics to improve patient care and reduce health care costs.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2020.2965858</identifier><identifier>PMID: 31940568</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithms ; Automated data analysis ; Biomedical monitoring ; Brain ; Brain Chemistry - physiology ; Clinical decision making ; Continuous data monitoring ; Cost analysis ; Critical Care - methods ; Decision making ; Diagnosis, Computer-Assisted - methods ; EEG ; Electrodes ; Electroencephalography ; Electroencephalography - methods ; Humans ; Intensive care ; Intensive care unit ; Intensive Care Units ; Intracranial pressure ; Intracranial Pressure - physiology ; Iris ; Latency ; Monitoring ; Monitoring, Physiologic - methods ; Multimodal data ; Neurology ; Oximetry - methods ; Oxygenation ; Patients ; Real time ; Signal Processing, Computer-Assisted ; Signal quality ; Telemedicine ; Throttling</subject><ispartof>IEEE journal of biomedical and health informatics, 2020-08, Vol.24 (8), p.2389-2397</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3</citedby><cites>FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3</cites><orcidid>0000-0003-1331-380X ; 0000-0001-5545-4278 ; 0000-0002-0291-1567 ; 0000-0003-0837-7120 ; 0000-0002-1414-7041 ; 0000-0002-4816-8756 ; 0000-0002-8528-0085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8957147$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31940568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baldassano, Steven N.</creatorcontrib><creatorcontrib>Roberson, Shawniqua Williams</creatorcontrib><creatorcontrib>Balu, Ramani</creatorcontrib><creatorcontrib>Scheid, Brittany</creatorcontrib><creatorcontrib>Bernabei, John M.</creatorcontrib><creatorcontrib>Pathmanathan, Jay</creatorcontrib><creatorcontrib>Oommen, Brian</creatorcontrib><creatorcontrib>Leri, Damien</creatorcontrib><creatorcontrib>Echauz, Javier</creatorcontrib><creatorcontrib>Gelfand, Michael</creatorcontrib><creatorcontrib>Bhalla, Paulomi Kadakia</creatorcontrib><creatorcontrib>Hill, Chloe E.</creatorcontrib><creatorcontrib>Christini, Amanda</creatorcontrib><creatorcontrib>Wagenaar, Joost B.</creatorcontrib><creatorcontrib>Litt, Brian</creatorcontrib><title>IRIS: A Modular Platform for Continuous Monitoring and Caretaker Notification in the Intensive Care Unit</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Objective: New approaches are needed to interpret large amounts of physiologic data continuously recorded in the ICU. We developed and prospectively validated a versatile platform (IRIS) for real-time ICU physiologic monitoring, clinical decision making, and caretaker notification. Methods: IRIS was implemented in the neurointensive care unit to stream multimodal time series data, including EEG, intracranial pressure (ICP), and brain tissue oxygenation (P bt O 2 ), from ICU monitors to an analysis server. IRIS was applied for 364 patients undergoing continuous EEG, 26 patients undergoing burst suppression monitoring, and four patients undergoing intracranial pressure and brain tissue oxygen monitoring. Custom algorithms were used to identify periods of elevated ICP, compute burst suppression ratios (BSRs), and detect faulty or disconnected EEG electrodes. Hospital staff were notified of clinically relevant events using our secure API to route alerts through a password-protected smartphone application. Results: Sustained increases in ICP and concordant decreases in P bt O 2 were reliably detected using user-defined thresholds and alert throttling. BSR trends computed by the platform correlated highly with manual neurologist markings (r 2  0.633-0.781; p &lt; 0.0001). The platform identified EEG electrodes with poor signal quality with 95% positive predictive value, and reduced latency of technician response by 93%. Conclusion: This study validates a flexible real-time platform for monitoring and interpreting ICU data and notifying caretakers of actionable results, with potential to reduce the manual burden of continuous monitoring services on care providers. Significance: This work represents an important step toward facilitating translational medical data analytics to improve patient care and reduce health care costs.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Automated data analysis</subject><subject>Biomedical monitoring</subject><subject>Brain</subject><subject>Brain Chemistry - physiology</subject><subject>Clinical decision making</subject><subject>Continuous data monitoring</subject><subject>Cost analysis</subject><subject>Critical Care - methods</subject><subject>Decision making</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Electroencephalography - methods</subject><subject>Humans</subject><subject>Intensive care</subject><subject>Intensive care unit</subject><subject>Intensive Care Units</subject><subject>Intracranial pressure</subject><subject>Intracranial Pressure - physiology</subject><subject>Iris</subject><subject>Latency</subject><subject>Monitoring</subject><subject>Monitoring, Physiologic - methods</subject><subject>Multimodal data</subject><subject>Neurology</subject><subject>Oximetry - methods</subject><subject>Oxygenation</subject><subject>Patients</subject><subject>Real time</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Signal quality</subject><subject>Telemedicine</subject><subject>Throttling</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkV1vFCEUhonR2Kb2BxgTQ-KNN7vyMcyAFyZ1o3ZM_Yjaa8LAmS51FlpgmvjvZd3tRuUCyDnP-4bDi9BTSpaUEvXq49vzfskII0umWiGFfICOGW3lgjEiH97fqWqO0GnO16QuWUuqfYyOeC0T0cpjtO6_9d9f4zP8Kbp5Mgl_nUwZY9rguuFVDMWHOc659oMvMflwhU1weGUSFPMTEv4cix-9NcXHgH3AZQ24DwVC9nfwh8OXVfoEPRrNlOF0f56gy_fvfqzOFxdfPvSrs4uFbZquLJyjzsjBSsmVMx3vGB-UpZLAMEo6GMndMI7CWtE4wY0g3NhBuEHxRgFtLT9Bb3a-N_OwAWchlGQmfZP8xqRfOhqv_-0Ev9ZX8U53jRQtkdXg5d4gxdsZctEbny1MkwlQP0IzzlWnGGe0oi_-Q6_jnEIdT7OGUyKlYqRSdEfZFHNOMB4eQ4neRqm3UeptlHofZdU8_3uKg-I-uAo82wEeAA5tqURHm47_Bs7Qo7Y</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Baldassano, Steven N.</creator><creator>Roberson, Shawniqua Williams</creator><creator>Balu, Ramani</creator><creator>Scheid, Brittany</creator><creator>Bernabei, John M.</creator><creator>Pathmanathan, Jay</creator><creator>Oommen, Brian</creator><creator>Leri, Damien</creator><creator>Echauz, Javier</creator><creator>Gelfand, Michael</creator><creator>Bhalla, Paulomi Kadakia</creator><creator>Hill, Chloe E.</creator><creator>Christini, Amanda</creator><creator>Wagenaar, Joost B.</creator><creator>Litt, Brian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1331-380X</orcidid><orcidid>https://orcid.org/0000-0001-5545-4278</orcidid><orcidid>https://orcid.org/0000-0002-0291-1567</orcidid><orcidid>https://orcid.org/0000-0003-0837-7120</orcidid><orcidid>https://orcid.org/0000-0002-1414-7041</orcidid><orcidid>https://orcid.org/0000-0002-4816-8756</orcidid><orcidid>https://orcid.org/0000-0002-8528-0085</orcidid></search><sort><creationdate>20200801</creationdate><title>IRIS: A Modular Platform for Continuous Monitoring and Caretaker Notification in the Intensive Care Unit</title><author>Baldassano, Steven N. ; Roberson, Shawniqua Williams ; Balu, Ramani ; Scheid, Brittany ; Bernabei, John M. ; Pathmanathan, Jay ; Oommen, Brian ; Leri, Damien ; Echauz, Javier ; Gelfand, Michael ; Bhalla, Paulomi Kadakia ; Hill, Chloe E. ; Christini, Amanda ; Wagenaar, Joost B. ; Litt, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Automated data analysis</topic><topic>Biomedical monitoring</topic><topic>Brain</topic><topic>Brain Chemistry - physiology</topic><topic>Clinical decision making</topic><topic>Continuous data monitoring</topic><topic>Cost analysis</topic><topic>Critical Care - methods</topic><topic>Decision making</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Electroencephalography - methods</topic><topic>Humans</topic><topic>Intensive care</topic><topic>Intensive care unit</topic><topic>Intensive Care Units</topic><topic>Intracranial pressure</topic><topic>Intracranial Pressure - physiology</topic><topic>Iris</topic><topic>Latency</topic><topic>Monitoring</topic><topic>Monitoring, Physiologic - methods</topic><topic>Multimodal data</topic><topic>Neurology</topic><topic>Oximetry - methods</topic><topic>Oxygenation</topic><topic>Patients</topic><topic>Real time</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Signal quality</topic><topic>Telemedicine</topic><topic>Throttling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baldassano, Steven N.</creatorcontrib><creatorcontrib>Roberson, Shawniqua Williams</creatorcontrib><creatorcontrib>Balu, Ramani</creatorcontrib><creatorcontrib>Scheid, Brittany</creatorcontrib><creatorcontrib>Bernabei, John M.</creatorcontrib><creatorcontrib>Pathmanathan, Jay</creatorcontrib><creatorcontrib>Oommen, Brian</creatorcontrib><creatorcontrib>Leri, Damien</creatorcontrib><creatorcontrib>Echauz, Javier</creatorcontrib><creatorcontrib>Gelfand, Michael</creatorcontrib><creatorcontrib>Bhalla, Paulomi Kadakia</creatorcontrib><creatorcontrib>Hill, Chloe E.</creatorcontrib><creatorcontrib>Christini, Amanda</creatorcontrib><creatorcontrib>Wagenaar, Joost B.</creatorcontrib><creatorcontrib>Litt, Brian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baldassano, Steven N.</au><au>Roberson, Shawniqua Williams</au><au>Balu, Ramani</au><au>Scheid, Brittany</au><au>Bernabei, John M.</au><au>Pathmanathan, Jay</au><au>Oommen, Brian</au><au>Leri, Damien</au><au>Echauz, Javier</au><au>Gelfand, Michael</au><au>Bhalla, Paulomi Kadakia</au><au>Hill, Chloe E.</au><au>Christini, Amanda</au><au>Wagenaar, Joost B.</au><au>Litt, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IRIS: A Modular Platform for Continuous Monitoring and Caretaker Notification in the Intensive Care Unit</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>24</volume><issue>8</issue><spage>2389</spage><epage>2397</epage><pages>2389-2397</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Objective: New approaches are needed to interpret large amounts of physiologic data continuously recorded in the ICU. We developed and prospectively validated a versatile platform (IRIS) for real-time ICU physiologic monitoring, clinical decision making, and caretaker notification. Methods: IRIS was implemented in the neurointensive care unit to stream multimodal time series data, including EEG, intracranial pressure (ICP), and brain tissue oxygenation (P bt O 2 ), from ICU monitors to an analysis server. IRIS was applied for 364 patients undergoing continuous EEG, 26 patients undergoing burst suppression monitoring, and four patients undergoing intracranial pressure and brain tissue oxygen monitoring. Custom algorithms were used to identify periods of elevated ICP, compute burst suppression ratios (BSRs), and detect faulty or disconnected EEG electrodes. Hospital staff were notified of clinically relevant events using our secure API to route alerts through a password-protected smartphone application. Results: Sustained increases in ICP and concordant decreases in P bt O 2 were reliably detected using user-defined thresholds and alert throttling. BSR trends computed by the platform correlated highly with manual neurologist markings (r 2  0.633-0.781; p &lt; 0.0001). The platform identified EEG electrodes with poor signal quality with 95% positive predictive value, and reduced latency of technician response by 93%. Conclusion: This study validates a flexible real-time platform for monitoring and interpreting ICU data and notifying caretakers of actionable results, with potential to reduce the manual burden of continuous monitoring services on care providers. Significance: This work represents an important step toward facilitating translational medical data analytics to improve patient care and reduce health care costs.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31940568</pmid><doi>10.1109/JBHI.2020.2965858</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1331-380X</orcidid><orcidid>https://orcid.org/0000-0001-5545-4278</orcidid><orcidid>https://orcid.org/0000-0002-0291-1567</orcidid><orcidid>https://orcid.org/0000-0003-0837-7120</orcidid><orcidid>https://orcid.org/0000-0002-1414-7041</orcidid><orcidid>https://orcid.org/0000-0002-4816-8756</orcidid><orcidid>https://orcid.org/0000-0002-8528-0085</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2020-08, Vol.24 (8), p.2389-2397
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_miscellaneous_2339792321
source IEEE Xplore (Online service)
subjects Adult
Algorithms
Automated data analysis
Biomedical monitoring
Brain
Brain Chemistry - physiology
Clinical decision making
Continuous data monitoring
Cost analysis
Critical Care - methods
Decision making
Diagnosis, Computer-Assisted - methods
EEG
Electrodes
Electroencephalography
Electroencephalography - methods
Humans
Intensive care
Intensive care unit
Intensive Care Units
Intracranial pressure
Intracranial Pressure - physiology
Iris
Latency
Monitoring
Monitoring, Physiologic - methods
Multimodal data
Neurology
Oximetry - methods
Oxygenation
Patients
Real time
Signal Processing, Computer-Assisted
Signal quality
Telemedicine
Throttling
title IRIS: A Modular Platform for Continuous Monitoring and Caretaker Notification in the Intensive Care Unit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IRIS:%20A%20Modular%20Platform%20for%20Continuous%20Monitoring%20and%20Caretaker%20Notification%20in%20the%20Intensive%20Care%20Unit&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Baldassano,%20Steven%20N.&rft.date=2020-08-01&rft.volume=24&rft.issue=8&rft.spage=2389&rft.epage=2397&rft.pages=2389-2397&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2020.2965858&rft_dat=%3Cproquest_pubme%3E2339792321%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-dd1da8bc8839da73723b9c180ebf81ba83dbff5cc54d53a503acb5db9349e16c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2431088920&rft_id=info:pmid/31940568&rft_ieee_id=8957147&rfr_iscdi=true