Loading…

Decoding the development of the human hippocampus

The hippocampus is an important part of the limbic system in the human brain that has essential roles in spatial navigation and the consolidation of information from short-term memory to long-term memory 1 , 2 . Here we use single-cell RNA sequencing and assay for transposase-accessible chromatin us...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 2020-01, Vol.577 (7791), p.531-536
Main Authors: Zhong, Suijuan, Ding, Wenyu, Sun, Le, Lu, Yufeng, Dong, Hao, Fan, Xiaoying, Liu, Zeyuan, Chen, Ruiguo, Zhang, Shu, Ma, Qiang, Tang, Fuchou, Wu, Qian, Wang, Xiaoqun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c613t-30032da11f17ff5b375ff448c3c5955f8fa008c05003d475788632b3588ee483
cites cdi_FETCH-LOGICAL-c613t-30032da11f17ff5b375ff448c3c5955f8fa008c05003d475788632b3588ee483
container_end_page 536
container_issue 7791
container_start_page 531
container_title Nature (London)
container_volume 577
creator Zhong, Suijuan
Ding, Wenyu
Sun, Le
Lu, Yufeng
Dong, Hao
Fan, Xiaoying
Liu, Zeyuan
Chen, Ruiguo
Zhang, Shu
Ma, Qiang
Tang, Fuchou
Wu, Qian
Wang, Xiaoqun
description The hippocampus is an important part of the limbic system in the human brain that has essential roles in spatial navigation and the consolidation of information from short-term memory to long-term memory 1 , 2 . Here we use single-cell RNA sequencing and assay for transposase-accessible chromatin using sequencing (ATAC–seq) analysis to illustrate the cell types, cell linage, molecular features and transcriptional regulation of the developing human hippocampus. Using the transcriptomes of 30,416 cells from the human hippocampus at gestational weeks 16–27, we identify 47 cell subtypes and their developmental trajectories. We also identify the migrating paths and cell lineages of PAX6 + and HOPX + hippocampal progenitors, and regional markers of CA1, CA3 and dentate gyrus neurons. Multiomic data have uncovered transcriptional regulatory networks of the dentate gyrus marker PROX1. We also illustrate spatially specific gene expression in the developing human prefrontal cortex and hippocampus. The molecular features of the human hippocampus at gestational weeks 16–20 are similar to those of the mouse at postnatal days 0–5 and reveal gene expression differences between the two species. Transient expression of the primate-specific gene NBPF1 leads to a marked increase in PROX1 + cells in the mouse hippocampus. These data provides a blueprint for understanding human hippocampal development and a tool for investigating related diseases. Single-cell RNA sequencing is used to catalogue and explore the developmental trajectories of more than 30,000 cells in the developing human hippocampus.
doi_str_mv 10.1038/s41586-019-1917-5
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2339793433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649099903</galeid><sourcerecordid>A649099903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-30032da11f17ff5b375ff448c3c5955f8fa008c05003d475788632b3588ee483</originalsourceid><addsrcrecordid>eNp90k1r3DAQBmBRGppt2h_QS1naS3tQOrIkSzqG9COBQKHNXWjlkdfBthzLDs2_j7ZOQxaWooNg9MwcNC8h7xicMuD6SxJM6pICM5QZpqh8QVZMqJKKUquXZAVQaAqal8fkdUo3ACCZEq_IMWdGFKBgRdhX9LFq-no9bXFd4R22ceiwn9Yx_C1t5871620zDNG7bpjTG3IUXJvw7eN9Qq6_f7s-v6BXP39cnp9dUV8yPlEOwIvKMRaYCkFuuJIhCKE999JIGXRwANqDzK4SSiqtS15suNQaUWh-Qj4tY4cx3s6YJts1yWPbuh7jnGzBuVGGC84z_bjQ2rVomz7EaXR-x-1ZKQwYY2Cn6AFVY4-ja2OPocnlPf_hgPdDc2ufo9MDKJ8Ku8YfnPp5ryGbCf9MtZtTspe_f-1btlg_xpRGDHYYm86N95aB3QXALgGwOQB2FwArc8_7x2-bNx1WTx3_Np5BsYCUn_oaR3sT57HPm_zP1Ad1A7UU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2339793433</pqid></control><display><type>article</type><title>Decoding the development of the human hippocampus</title><source>Nature</source><creator>Zhong, Suijuan ; Ding, Wenyu ; Sun, Le ; Lu, Yufeng ; Dong, Hao ; Fan, Xiaoying ; Liu, Zeyuan ; Chen, Ruiguo ; Zhang, Shu ; Ma, Qiang ; Tang, Fuchou ; Wu, Qian ; Wang, Xiaoqun</creator><creatorcontrib>Zhong, Suijuan ; Ding, Wenyu ; Sun, Le ; Lu, Yufeng ; Dong, Hao ; Fan, Xiaoying ; Liu, Zeyuan ; Chen, Ruiguo ; Zhang, Shu ; Ma, Qiang ; Tang, Fuchou ; Wu, Qian ; Wang, Xiaoqun</creatorcontrib><description>The hippocampus is an important part of the limbic system in the human brain that has essential roles in spatial navigation and the consolidation of information from short-term memory to long-term memory 1 , 2 . Here we use single-cell RNA sequencing and assay for transposase-accessible chromatin using sequencing (ATAC–seq) analysis to illustrate the cell types, cell linage, molecular features and transcriptional regulation of the developing human hippocampus. Using the transcriptomes of 30,416 cells from the human hippocampus at gestational weeks 16–27, we identify 47 cell subtypes and their developmental trajectories. We also identify the migrating paths and cell lineages of PAX6 + and HOPX + hippocampal progenitors, and regional markers of CA1, CA3 and dentate gyrus neurons. Multiomic data have uncovered transcriptional regulatory networks of the dentate gyrus marker PROX1. We also illustrate spatially specific gene expression in the developing human prefrontal cortex and hippocampus. The molecular features of the human hippocampus at gestational weeks 16–20 are similar to those of the mouse at postnatal days 0–5 and reveal gene expression differences between the two species. Transient expression of the primate-specific gene NBPF1 leads to a marked increase in PROX1 + cells in the mouse hippocampus. These data provides a blueprint for understanding human hippocampal development and a tool for investigating related diseases. Single-cell RNA sequencing is used to catalogue and explore the developmental trajectories of more than 30,000 cells in the developing human hippocampus.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1917-5</identifier><identifier>PMID: 31942070</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/91 ; 631/136/368/2430 ; 631/378/2571/2578 ; Animals ; Carrier Proteins - metabolism ; Cell Lineage ; Dentate Gyrus - cytology ; Dentate Gyrus - embryology ; Dentate Gyrus - metabolism ; Evolution, Molecular ; Female ; Gene Expression Regulation, Developmental - genetics ; Genetic aspects ; Hippocampus (Brain) ; Hippocampus - cytology ; Hippocampus - embryology ; Hippocampus - metabolism ; Homeodomain Proteins - metabolism ; Humanities and Social Sciences ; Humans ; Male ; Mice ; multidisciplinary ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Neurogenesis ; Neurons - cytology ; Neurons - metabolism ; PAX6 Transcription Factor - metabolism ; Physiological aspects ; Prefrontal Cortex - cytology ; Prefrontal Cortex - embryology ; Prefrontal Cortex - metabolism ; Science ; Science (multidisciplinary) ; Species Specificity ; Transcriptome - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>Nature (London), 2020-01, Vol.577 (7791), p.531-536</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-30032da11f17ff5b375ff448c3c5955f8fa008c05003d475788632b3588ee483</citedby><cites>FETCH-LOGICAL-c613t-30032da11f17ff5b375ff448c3c5955f8fa008c05003d475788632b3588ee483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31942070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Suijuan</creatorcontrib><creatorcontrib>Ding, Wenyu</creatorcontrib><creatorcontrib>Sun, Le</creatorcontrib><creatorcontrib>Lu, Yufeng</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Fan, Xiaoying</creatorcontrib><creatorcontrib>Liu, Zeyuan</creatorcontrib><creatorcontrib>Chen, Ruiguo</creatorcontrib><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Ma, Qiang</creatorcontrib><creatorcontrib>Tang, Fuchou</creatorcontrib><creatorcontrib>Wu, Qian</creatorcontrib><creatorcontrib>Wang, Xiaoqun</creatorcontrib><title>Decoding the development of the human hippocampus</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The hippocampus is an important part of the limbic system in the human brain that has essential roles in spatial navigation and the consolidation of information from short-term memory to long-term memory 1 , 2 . Here we use single-cell RNA sequencing and assay for transposase-accessible chromatin using sequencing (ATAC–seq) analysis to illustrate the cell types, cell linage, molecular features and transcriptional regulation of the developing human hippocampus. Using the transcriptomes of 30,416 cells from the human hippocampus at gestational weeks 16–27, we identify 47 cell subtypes and their developmental trajectories. We also identify the migrating paths and cell lineages of PAX6 + and HOPX + hippocampal progenitors, and regional markers of CA1, CA3 and dentate gyrus neurons. Multiomic data have uncovered transcriptional regulatory networks of the dentate gyrus marker PROX1. We also illustrate spatially specific gene expression in the developing human prefrontal cortex and hippocampus. The molecular features of the human hippocampus at gestational weeks 16–20 are similar to those of the mouse at postnatal days 0–5 and reveal gene expression differences between the two species. Transient expression of the primate-specific gene NBPF1 leads to a marked increase in PROX1 + cells in the mouse hippocampus. These data provides a blueprint for understanding human hippocampal development and a tool for investigating related diseases. Single-cell RNA sequencing is used to catalogue and explore the developmental trajectories of more than 30,000 cells in the developing human hippocampus.</description><subject>45/91</subject><subject>631/136/368/2430</subject><subject>631/378/2571/2578</subject><subject>Animals</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Lineage</subject><subject>Dentate Gyrus - cytology</subject><subject>Dentate Gyrus - embryology</subject><subject>Dentate Gyrus - metabolism</subject><subject>Evolution, Molecular</subject><subject>Female</subject><subject>Gene Expression Regulation, Developmental - genetics</subject><subject>Genetic aspects</subject><subject>Hippocampus (Brain)</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - embryology</subject><subject>Hippocampus - metabolism</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Male</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Neurogenesis</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>PAX6 Transcription Factor - metabolism</subject><subject>Physiological aspects</subject><subject>Prefrontal Cortex - cytology</subject><subject>Prefrontal Cortex - embryology</subject><subject>Prefrontal Cortex - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Species Specificity</subject><subject>Transcriptome - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90k1r3DAQBmBRGppt2h_QS1naS3tQOrIkSzqG9COBQKHNXWjlkdfBthzLDs2_j7ZOQxaWooNg9MwcNC8h7xicMuD6SxJM6pICM5QZpqh8QVZMqJKKUquXZAVQaAqal8fkdUo3ACCZEq_IMWdGFKBgRdhX9LFq-no9bXFd4R22ceiwn9Yx_C1t5871620zDNG7bpjTG3IUXJvw7eN9Qq6_f7s-v6BXP39cnp9dUV8yPlEOwIvKMRaYCkFuuJIhCKE999JIGXRwANqDzK4SSiqtS15suNQaUWh-Qj4tY4cx3s6YJts1yWPbuh7jnGzBuVGGC84z_bjQ2rVomz7EaXR-x-1ZKQwYY2Cn6AFVY4-ja2OPocnlPf_hgPdDc2ufo9MDKJ8Ku8YfnPp5ryGbCf9MtZtTspe_f-1btlg_xpRGDHYYm86N95aB3QXALgGwOQB2FwArc8_7x2-bNx1WTx3_Np5BsYCUn_oaR3sT57HPm_zP1Ad1A7UU</recordid><startdate>20200123</startdate><enddate>20200123</enddate><creator>Zhong, Suijuan</creator><creator>Ding, Wenyu</creator><creator>Sun, Le</creator><creator>Lu, Yufeng</creator><creator>Dong, Hao</creator><creator>Fan, Xiaoying</creator><creator>Liu, Zeyuan</creator><creator>Chen, Ruiguo</creator><creator>Zhang, Shu</creator><creator>Ma, Qiang</creator><creator>Tang, Fuchou</creator><creator>Wu, Qian</creator><creator>Wang, Xiaoqun</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200123</creationdate><title>Decoding the development of the human hippocampus</title><author>Zhong, Suijuan ; Ding, Wenyu ; Sun, Le ; Lu, Yufeng ; Dong, Hao ; Fan, Xiaoying ; Liu, Zeyuan ; Chen, Ruiguo ; Zhang, Shu ; Ma, Qiang ; Tang, Fuchou ; Wu, Qian ; Wang, Xiaoqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-30032da11f17ff5b375ff448c3c5955f8fa008c05003d475788632b3588ee483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>45/91</topic><topic>631/136/368/2430</topic><topic>631/378/2571/2578</topic><topic>Animals</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Lineage</topic><topic>Dentate Gyrus - cytology</topic><topic>Dentate Gyrus - embryology</topic><topic>Dentate Gyrus - metabolism</topic><topic>Evolution, Molecular</topic><topic>Female</topic><topic>Gene Expression Regulation, Developmental - genetics</topic><topic>Genetic aspects</topic><topic>Hippocampus (Brain)</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - embryology</topic><topic>Hippocampus - metabolism</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Male</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Neurogenesis</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>PAX6 Transcription Factor - metabolism</topic><topic>Physiological aspects</topic><topic>Prefrontal Cortex - cytology</topic><topic>Prefrontal Cortex - embryology</topic><topic>Prefrontal Cortex - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Species Specificity</topic><topic>Transcriptome - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Suijuan</creatorcontrib><creatorcontrib>Ding, Wenyu</creatorcontrib><creatorcontrib>Sun, Le</creatorcontrib><creatorcontrib>Lu, Yufeng</creatorcontrib><creatorcontrib>Dong, Hao</creatorcontrib><creatorcontrib>Fan, Xiaoying</creatorcontrib><creatorcontrib>Liu, Zeyuan</creatorcontrib><creatorcontrib>Chen, Ruiguo</creatorcontrib><creatorcontrib>Zhang, Shu</creatorcontrib><creatorcontrib>Ma, Qiang</creatorcontrib><creatorcontrib>Tang, Fuchou</creatorcontrib><creatorcontrib>Wu, Qian</creatorcontrib><creatorcontrib>Wang, Xiaoqun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Suijuan</au><au>Ding, Wenyu</au><au>Sun, Le</au><au>Lu, Yufeng</au><au>Dong, Hao</au><au>Fan, Xiaoying</au><au>Liu, Zeyuan</au><au>Chen, Ruiguo</au><au>Zhang, Shu</au><au>Ma, Qiang</au><au>Tang, Fuchou</au><au>Wu, Qian</au><au>Wang, Xiaoqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding the development of the human hippocampus</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2020-01-23</date><risdate>2020</risdate><volume>577</volume><issue>7791</issue><spage>531</spage><epage>536</epage><pages>531-536</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The hippocampus is an important part of the limbic system in the human brain that has essential roles in spatial navigation and the consolidation of information from short-term memory to long-term memory 1 , 2 . Here we use single-cell RNA sequencing and assay for transposase-accessible chromatin using sequencing (ATAC–seq) analysis to illustrate the cell types, cell linage, molecular features and transcriptional regulation of the developing human hippocampus. Using the transcriptomes of 30,416 cells from the human hippocampus at gestational weeks 16–27, we identify 47 cell subtypes and their developmental trajectories. We also identify the migrating paths and cell lineages of PAX6 + and HOPX + hippocampal progenitors, and regional markers of CA1, CA3 and dentate gyrus neurons. Multiomic data have uncovered transcriptional regulatory networks of the dentate gyrus marker PROX1. We also illustrate spatially specific gene expression in the developing human prefrontal cortex and hippocampus. The molecular features of the human hippocampus at gestational weeks 16–20 are similar to those of the mouse at postnatal days 0–5 and reveal gene expression differences between the two species. Transient expression of the primate-specific gene NBPF1 leads to a marked increase in PROX1 + cells in the mouse hippocampus. These data provides a blueprint for understanding human hippocampal development and a tool for investigating related diseases. Single-cell RNA sequencing is used to catalogue and explore the developmental trajectories of more than 30,000 cells in the developing human hippocampus.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31942070</pmid><doi>10.1038/s41586-019-1917-5</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2020-01, Vol.577 (7791), p.531-536
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2339793433
source Nature
subjects 45/91
631/136/368/2430
631/378/2571/2578
Animals
Carrier Proteins - metabolism
Cell Lineage
Dentate Gyrus - cytology
Dentate Gyrus - embryology
Dentate Gyrus - metabolism
Evolution, Molecular
Female
Gene Expression Regulation, Developmental - genetics
Genetic aspects
Hippocampus (Brain)
Hippocampus - cytology
Hippocampus - embryology
Hippocampus - metabolism
Homeodomain Proteins - metabolism
Humanities and Social Sciences
Humans
Male
Mice
multidisciplinary
Neural Stem Cells - cytology
Neural Stem Cells - metabolism
Neurogenesis
Neurons - cytology
Neurons - metabolism
PAX6 Transcription Factor - metabolism
Physiological aspects
Prefrontal Cortex - cytology
Prefrontal Cortex - embryology
Prefrontal Cortex - metabolism
Science
Science (multidisciplinary)
Species Specificity
Transcriptome - genetics
Tumor Suppressor Proteins - metabolism
title Decoding the development of the human hippocampus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20the%20development%20of%20the%20human%20hippocampus&rft.jtitle=Nature%20(London)&rft.au=Zhong,%20Suijuan&rft.date=2020-01-23&rft.volume=577&rft.issue=7791&rft.spage=531&rft.epage=536&rft.pages=531-536&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1917-5&rft_dat=%3Cgale_proqu%3EA649099903%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c613t-30032da11f17ff5b375ff448c3c5955f8fa008c05003d475788632b3588ee483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2339793433&rft_id=info:pmid/31942070&rft_galeid=A649099903&rfr_iscdi=true