Loading…
Modeling Gel Swelling Equilibrium in the Mean Field: From Explicit to Poisson-Boltzmann Models
We develop a double mean-field theory for charged macrogels immersed in electrolyte solutions in the spirit of the cell model approach. We first demonstrate that the equilibrium sampling of a single explicit coarse-grained charged polymer in a cell yields accurate predictions of the swelling equilib...
Saved in:
Published in: | Physical review letters 2019-05, Vol.122 (20), p.208002-208002, Article 208002 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We develop a double mean-field theory for charged macrogels immersed in electrolyte solutions in the spirit of the cell model approach. We first demonstrate that the equilibrium sampling of a single explicit coarse-grained charged polymer in a cell yields accurate predictions of the swelling equilibrium if the geometry is suitably chosen and all pressure contributions have been incorporated accurately. We then replace the explicit flexible chain by a suitably modeled penetrable charged rod that allows us to compute all pressure terms within the Poisson-Boltzmann approximation. This model, albeit computationally cheap, yields excellent predictions of swelling equilibria under varying chain length, polymer charge fraction, and external reservoir salt concentrations when compared to coarse-grained molecular dynamics simulations of charged macrogels. We present an extension of the model to the experimentally relevant cases of pH-sensitive gels. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.122.208002 |