Loading…
Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload
Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not...
Saved in:
Published in: | Science signaling 2019-06, Vol.12 (587) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83 |
container_end_page | |
container_issue | 587 |
container_start_page | |
container_title | Science signaling |
container_volume | 12 |
creator | Nishimura, Akiyuki Shimoda, Kakeru Tanaka, Tomohiro Toyama, Takashi Nishiyama, Kazuhiro Shinkai, Yasuhiro Numaga-Tomita, Takuro Yamazaki, Daiju Kanda, Yasunari Akaike, Takaaki Kumagai, Yoshito Nishida, Motohiro |
description | Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not induce weight loss typical of higher doses but caused mitochondrial hyperfission in myocardium through the activation of Drp1 by its guanine nucleotide exchange factor filamin-A. Treatment of neonatal rat cardiomyocytes with cilnidipine, an inhibitor of the interaction between Drp1 and filamin-A, suppressed mitochondrial hyperfission caused by low-dose MeHg exposure. Modification of cysteine residues in proteins with polysulfides is important for redox signaling and mitochondrial homeostasis in mammalian cells. We found that MeHg targeted rat Drp1 at Cys
, a redox-sensitive residue whose SH side chain forms a bulky and nucleophilic polysulfide (Cys
-S
H). MeHg exposure induced the depolysulfidation of Cys
-S
H in Drp1, which led to filamin-dependent activation of Drp1 and mitochondrial hyperfission. Treatment with NaHS, which acts as a donor for reactive polysulfides, reversed MeHg-evoked Drp1 depolysulfidation and vulnerability to mechanical load in rodent and human cardiomyocytes and mouse hearts. These results suggest that depolysulfidation of Drp1 at Cys
-S
H by low-dose MeHg increases cardiac fragility to mechanical load through filamin-dependent mitochondrial hyperfission. |
doi_str_mv | 10.1126/scisignal.aaw1920 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2340049298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340049298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83</originalsourceid><addsrcrecordid>eNpdkTtv1jAUhi0Eohf4ASzIEgtLiq-xPaIWClIlFpgjX06oKycOdtwSiR9PPvWjA9N5h-d9h_Mg9IaSC0pZ_6H6WOPP2aYLax-oYeQZOqWGq85QIZ8fspAd0UqdoLNa7wjpKWPmJTrhlHHDGT9Ff65gyWmrLY0x2DXmGecRX5WF4jiH5iFgt-GUH7qQK-AJ1tstTVB8KxuG30uurcCO-gK2QsXelhCtx_ctzVCsiymuG14zvoUph222U_Q430NJ2YZX6MVoU4XXx3uOfnz-9P3yS3fz7frr5cebzguu1867ngXFqCBEe0e0NEAsHaUwRIleUsWZUzIwF3oerA6EWE8JCCmdEtppfo7eP-4uJf9qUNdhitVDSnaG3OrA-D4tDDMH9N1_6F1uZX_xTjGpGNO65ztFHylfcq0FxmEpcbJlGygZDmqGJzXDUc3eeXtcbm6C8NT454L_Bascj0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257228863</pqid></control><display><type>article</type><title>Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload</title><source>Alma/SFX Local Collection</source><creator>Nishimura, Akiyuki ; Shimoda, Kakeru ; Tanaka, Tomohiro ; Toyama, Takashi ; Nishiyama, Kazuhiro ; Shinkai, Yasuhiro ; Numaga-Tomita, Takuro ; Yamazaki, Daiju ; Kanda, Yasunari ; Akaike, Takaaki ; Kumagai, Yoshito ; Nishida, Motohiro</creator><creatorcontrib>Nishimura, Akiyuki ; Shimoda, Kakeru ; Tanaka, Tomohiro ; Toyama, Takashi ; Nishiyama, Kazuhiro ; Shinkai, Yasuhiro ; Numaga-Tomita, Takuro ; Yamazaki, Daiju ; Kanda, Yasunari ; Akaike, Takaaki ; Kumagai, Yoshito ; Nishida, Motohiro</creatorcontrib><description>Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not induce weight loss typical of higher doses but caused mitochondrial hyperfission in myocardium through the activation of Drp1 by its guanine nucleotide exchange factor filamin-A. Treatment of neonatal rat cardiomyocytes with cilnidipine, an inhibitor of the interaction between Drp1 and filamin-A, suppressed mitochondrial hyperfission caused by low-dose MeHg exposure. Modification of cysteine residues in proteins with polysulfides is important for redox signaling and mitochondrial homeostasis in mammalian cells. We found that MeHg targeted rat Drp1 at Cys
, a redox-sensitive residue whose SH side chain forms a bulky and nucleophilic polysulfide (Cys
-S
H). MeHg exposure induced the depolysulfidation of Cys
-S
H in Drp1, which led to filamin-dependent activation of Drp1 and mitochondrial hyperfission. Treatment with NaHS, which acts as a donor for reactive polysulfides, reversed MeHg-evoked Drp1 depolysulfidation and vulnerability to mechanical load in rodent and human cardiomyocytes and mouse hearts. These results suggest that depolysulfidation of Drp1 at Cys
-S
H by low-dose MeHg increases cardiac fragility to mechanical load through filamin-dependent mitochondrial hyperfission.</description><identifier>ISSN: 1945-0877</identifier><identifier>EISSN: 1937-9145</identifier><identifier>DOI: 10.1126/scisignal.aaw1920</identifier><identifier>PMID: 31239323</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Activation ; Cardiomyocytes ; Cardiovascular diseases ; Chronic exposure ; Cilnidipine ; Congestive heart failure ; Contaminants ; Dimethylmercury ; Environmental risk ; Exposure ; Fragility ; Guanine ; Guanine nucleotide exchange factor ; Health risks ; Heart failure ; Hemodynamics ; Homeostasis ; Mammalian cells ; Mechanical properties ; Mercury (metal) ; Methylmercury ; Mice ; Mitochondria ; Myocardium ; Neonates ; Neurotoxicity ; Nucleotides ; Pollutants ; Polysulfides ; Pressure ; Proteins ; Weight loss</subject><ispartof>Science signaling, 2019-06, Vol.12 (587)</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83</citedby><cites>FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83</cites><orcidid>0000-0001-8322-3733 ; 0000-0002-6984-9016 ; 0000-0002-2587-5458 ; 0000-0003-2309-3994 ; 0000-0001-7442-4912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31239323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishimura, Akiyuki</creatorcontrib><creatorcontrib>Shimoda, Kakeru</creatorcontrib><creatorcontrib>Tanaka, Tomohiro</creatorcontrib><creatorcontrib>Toyama, Takashi</creatorcontrib><creatorcontrib>Nishiyama, Kazuhiro</creatorcontrib><creatorcontrib>Shinkai, Yasuhiro</creatorcontrib><creatorcontrib>Numaga-Tomita, Takuro</creatorcontrib><creatorcontrib>Yamazaki, Daiju</creatorcontrib><creatorcontrib>Kanda, Yasunari</creatorcontrib><creatorcontrib>Akaike, Takaaki</creatorcontrib><creatorcontrib>Kumagai, Yoshito</creatorcontrib><creatorcontrib>Nishida, Motohiro</creatorcontrib><title>Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload</title><title>Science signaling</title><addtitle>Sci Signal</addtitle><description>Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not induce weight loss typical of higher doses but caused mitochondrial hyperfission in myocardium through the activation of Drp1 by its guanine nucleotide exchange factor filamin-A. Treatment of neonatal rat cardiomyocytes with cilnidipine, an inhibitor of the interaction between Drp1 and filamin-A, suppressed mitochondrial hyperfission caused by low-dose MeHg exposure. Modification of cysteine residues in proteins with polysulfides is important for redox signaling and mitochondrial homeostasis in mammalian cells. We found that MeHg targeted rat Drp1 at Cys
, a redox-sensitive residue whose SH side chain forms a bulky and nucleophilic polysulfide (Cys
-S
H). MeHg exposure induced the depolysulfidation of Cys
-S
H in Drp1, which led to filamin-dependent activation of Drp1 and mitochondrial hyperfission. Treatment with NaHS, which acts as a donor for reactive polysulfides, reversed MeHg-evoked Drp1 depolysulfidation and vulnerability to mechanical load in rodent and human cardiomyocytes and mouse hearts. These results suggest that depolysulfidation of Drp1 at Cys
-S
H by low-dose MeHg increases cardiac fragility to mechanical load through filamin-dependent mitochondrial hyperfission.</description><subject>Activation</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular diseases</subject><subject>Chronic exposure</subject><subject>Cilnidipine</subject><subject>Congestive heart failure</subject><subject>Contaminants</subject><subject>Dimethylmercury</subject><subject>Environmental risk</subject><subject>Exposure</subject><subject>Fragility</subject><subject>Guanine</subject><subject>Guanine nucleotide exchange factor</subject><subject>Health risks</subject><subject>Heart failure</subject><subject>Hemodynamics</subject><subject>Homeostasis</subject><subject>Mammalian cells</subject><subject>Mechanical properties</subject><subject>Mercury (metal)</subject><subject>Methylmercury</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Myocardium</subject><subject>Neonates</subject><subject>Neurotoxicity</subject><subject>Nucleotides</subject><subject>Pollutants</subject><subject>Polysulfides</subject><subject>Pressure</subject><subject>Proteins</subject><subject>Weight loss</subject><issn>1945-0877</issn><issn>1937-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkTtv1jAUhi0Eohf4ASzIEgtLiq-xPaIWClIlFpgjX06oKycOdtwSiR9PPvWjA9N5h-d9h_Mg9IaSC0pZ_6H6WOPP2aYLax-oYeQZOqWGq85QIZ8fspAd0UqdoLNa7wjpKWPmJTrhlHHDGT9Ff65gyWmrLY0x2DXmGecRX5WF4jiH5iFgt-GUH7qQK-AJ1tstTVB8KxuG30uurcCO-gK2QsXelhCtx_ctzVCsiymuG14zvoUph222U_Q430NJ2YZX6MVoU4XXx3uOfnz-9P3yS3fz7frr5cebzguu1867ngXFqCBEe0e0NEAsHaUwRIleUsWZUzIwF3oerA6EWE8JCCmdEtppfo7eP-4uJf9qUNdhitVDSnaG3OrA-D4tDDMH9N1_6F1uZX_xTjGpGNO65ztFHylfcq0FxmEpcbJlGygZDmqGJzXDUc3eeXtcbm6C8NT454L_Bascj0U</recordid><startdate>20190625</startdate><enddate>20190625</enddate><creator>Nishimura, Akiyuki</creator><creator>Shimoda, Kakeru</creator><creator>Tanaka, Tomohiro</creator><creator>Toyama, Takashi</creator><creator>Nishiyama, Kazuhiro</creator><creator>Shinkai, Yasuhiro</creator><creator>Numaga-Tomita, Takuro</creator><creator>Yamazaki, Daiju</creator><creator>Kanda, Yasunari</creator><creator>Akaike, Takaaki</creator><creator>Kumagai, Yoshito</creator><creator>Nishida, Motohiro</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8322-3733</orcidid><orcidid>https://orcid.org/0000-0002-6984-9016</orcidid><orcidid>https://orcid.org/0000-0002-2587-5458</orcidid><orcidid>https://orcid.org/0000-0003-2309-3994</orcidid><orcidid>https://orcid.org/0000-0001-7442-4912</orcidid></search><sort><creationdate>20190625</creationdate><title>Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload</title><author>Nishimura, Akiyuki ; Shimoda, Kakeru ; Tanaka, Tomohiro ; Toyama, Takashi ; Nishiyama, Kazuhiro ; Shinkai, Yasuhiro ; Numaga-Tomita, Takuro ; Yamazaki, Daiju ; Kanda, Yasunari ; Akaike, Takaaki ; Kumagai, Yoshito ; Nishida, Motohiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular diseases</topic><topic>Chronic exposure</topic><topic>Cilnidipine</topic><topic>Congestive heart failure</topic><topic>Contaminants</topic><topic>Dimethylmercury</topic><topic>Environmental risk</topic><topic>Exposure</topic><topic>Fragility</topic><topic>Guanine</topic><topic>Guanine nucleotide exchange factor</topic><topic>Health risks</topic><topic>Heart failure</topic><topic>Hemodynamics</topic><topic>Homeostasis</topic><topic>Mammalian cells</topic><topic>Mechanical properties</topic><topic>Mercury (metal)</topic><topic>Methylmercury</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Myocardium</topic><topic>Neonates</topic><topic>Neurotoxicity</topic><topic>Nucleotides</topic><topic>Pollutants</topic><topic>Polysulfides</topic><topic>Pressure</topic><topic>Proteins</topic><topic>Weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishimura, Akiyuki</creatorcontrib><creatorcontrib>Shimoda, Kakeru</creatorcontrib><creatorcontrib>Tanaka, Tomohiro</creatorcontrib><creatorcontrib>Toyama, Takashi</creatorcontrib><creatorcontrib>Nishiyama, Kazuhiro</creatorcontrib><creatorcontrib>Shinkai, Yasuhiro</creatorcontrib><creatorcontrib>Numaga-Tomita, Takuro</creatorcontrib><creatorcontrib>Yamazaki, Daiju</creatorcontrib><creatorcontrib>Kanda, Yasunari</creatorcontrib><creatorcontrib>Akaike, Takaaki</creatorcontrib><creatorcontrib>Kumagai, Yoshito</creatorcontrib><creatorcontrib>Nishida, Motohiro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishimura, Akiyuki</au><au>Shimoda, Kakeru</au><au>Tanaka, Tomohiro</au><au>Toyama, Takashi</au><au>Nishiyama, Kazuhiro</au><au>Shinkai, Yasuhiro</au><au>Numaga-Tomita, Takuro</au><au>Yamazaki, Daiju</au><au>Kanda, Yasunari</au><au>Akaike, Takaaki</au><au>Kumagai, Yoshito</au><au>Nishida, Motohiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload</atitle><jtitle>Science signaling</jtitle><addtitle>Sci Signal</addtitle><date>2019-06-25</date><risdate>2019</risdate><volume>12</volume><issue>587</issue><issn>1945-0877</issn><eissn>1937-9145</eissn><abstract>Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not induce weight loss typical of higher doses but caused mitochondrial hyperfission in myocardium through the activation of Drp1 by its guanine nucleotide exchange factor filamin-A. Treatment of neonatal rat cardiomyocytes with cilnidipine, an inhibitor of the interaction between Drp1 and filamin-A, suppressed mitochondrial hyperfission caused by low-dose MeHg exposure. Modification of cysteine residues in proteins with polysulfides is important for redox signaling and mitochondrial homeostasis in mammalian cells. We found that MeHg targeted rat Drp1 at Cys
, a redox-sensitive residue whose SH side chain forms a bulky and nucleophilic polysulfide (Cys
-S
H). MeHg exposure induced the depolysulfidation of Cys
-S
H in Drp1, which led to filamin-dependent activation of Drp1 and mitochondrial hyperfission. Treatment with NaHS, which acts as a donor for reactive polysulfides, reversed MeHg-evoked Drp1 depolysulfidation and vulnerability to mechanical load in rodent and human cardiomyocytes and mouse hearts. These results suggest that depolysulfidation of Drp1 at Cys
-S
H by low-dose MeHg increases cardiac fragility to mechanical load through filamin-dependent mitochondrial hyperfission.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>31239323</pmid><doi>10.1126/scisignal.aaw1920</doi><orcidid>https://orcid.org/0000-0001-8322-3733</orcidid><orcidid>https://orcid.org/0000-0002-6984-9016</orcidid><orcidid>https://orcid.org/0000-0002-2587-5458</orcidid><orcidid>https://orcid.org/0000-0003-2309-3994</orcidid><orcidid>https://orcid.org/0000-0001-7442-4912</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1945-0877 |
ispartof | Science signaling, 2019-06, Vol.12 (587) |
issn | 1945-0877 1937-9145 |
language | eng |
recordid | cdi_proquest_miscellaneous_2340049298 |
source | Alma/SFX Local Collection |
subjects | Activation Cardiomyocytes Cardiovascular diseases Chronic exposure Cilnidipine Congestive heart failure Contaminants Dimethylmercury Environmental risk Exposure Fragility Guanine Guanine nucleotide exchange factor Health risks Heart failure Hemodynamics Homeostasis Mammalian cells Mechanical properties Mercury (metal) Methylmercury Mice Mitochondria Myocardium Neonates Neurotoxicity Nucleotides Pollutants Polysulfides Pressure Proteins Weight loss |
title | Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depolysulfidation%20of%20Drp1%20induced%20by%20low-dose%20methylmercury%20exposure%20increases%20cardiac%20vulnerability%20to%20hemodynamic%20overload&rft.jtitle=Science%20signaling&rft.au=Nishimura,%20Akiyuki&rft.date=2019-06-25&rft.volume=12&rft.issue=587&rft.issn=1945-0877&rft.eissn=1937-9145&rft_id=info:doi/10.1126/scisignal.aaw1920&rft_dat=%3Cproquest_cross%3E2340049298%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2257228863&rft_id=info:pmid/31239323&rfr_iscdi=true |