Loading…

Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload

Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not...

Full description

Saved in:
Bibliographic Details
Published in:Science signaling 2019-06, Vol.12 (587)
Main Authors: Nishimura, Akiyuki, Shimoda, Kakeru, Tanaka, Tomohiro, Toyama, Takashi, Nishiyama, Kazuhiro, Shinkai, Yasuhiro, Numaga-Tomita, Takuro, Yamazaki, Daiju, Kanda, Yasunari, Akaike, Takaaki, Kumagai, Yoshito, Nishida, Motohiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83
cites cdi_FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83
container_end_page
container_issue 587
container_start_page
container_title Science signaling
container_volume 12
creator Nishimura, Akiyuki
Shimoda, Kakeru
Tanaka, Tomohiro
Toyama, Takashi
Nishiyama, Kazuhiro
Shinkai, Yasuhiro
Numaga-Tomita, Takuro
Yamazaki, Daiju
Kanda, Yasunari
Akaike, Takaaki
Kumagai, Yoshito
Nishida, Motohiro
description Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not induce weight loss typical of higher doses but caused mitochondrial hyperfission in myocardium through the activation of Drp1 by its guanine nucleotide exchange factor filamin-A. Treatment of neonatal rat cardiomyocytes with cilnidipine, an inhibitor of the interaction between Drp1 and filamin-A, suppressed mitochondrial hyperfission caused by low-dose MeHg exposure. Modification of cysteine residues in proteins with polysulfides is important for redox signaling and mitochondrial homeostasis in mammalian cells. We found that MeHg targeted rat Drp1 at Cys , a redox-sensitive residue whose SH side chain forms a bulky and nucleophilic polysulfide (Cys -S H). MeHg exposure induced the depolysulfidation of Cys -S H in Drp1, which led to filamin-dependent activation of Drp1 and mitochondrial hyperfission. Treatment with NaHS, which acts as a donor for reactive polysulfides, reversed MeHg-evoked Drp1 depolysulfidation and vulnerability to mechanical load in rodent and human cardiomyocytes and mouse hearts. These results suggest that depolysulfidation of Drp1 at Cys -S H by low-dose MeHg increases cardiac fragility to mechanical load through filamin-dependent mitochondrial hyperfission.
doi_str_mv 10.1126/scisignal.aaw1920
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2340049298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2340049298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83</originalsourceid><addsrcrecordid>eNpdkTtv1jAUhi0Eohf4ASzIEgtLiq-xPaIWClIlFpgjX06oKycOdtwSiR9PPvWjA9N5h-d9h_Mg9IaSC0pZ_6H6WOPP2aYLax-oYeQZOqWGq85QIZ8fspAd0UqdoLNa7wjpKWPmJTrhlHHDGT9Ff65gyWmrLY0x2DXmGecRX5WF4jiH5iFgt-GUH7qQK-AJ1tstTVB8KxuG30uurcCO-gK2QsXelhCtx_ctzVCsiymuG14zvoUph222U_Q430NJ2YZX6MVoU4XXx3uOfnz-9P3yS3fz7frr5cebzguu1867ngXFqCBEe0e0NEAsHaUwRIleUsWZUzIwF3oerA6EWE8JCCmdEtppfo7eP-4uJf9qUNdhitVDSnaG3OrA-D4tDDMH9N1_6F1uZX_xTjGpGNO65ztFHylfcq0FxmEpcbJlGygZDmqGJzXDUc3eeXtcbm6C8NT454L_Bascj0U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257228863</pqid></control><display><type>article</type><title>Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload</title><source>Alma/SFX Local Collection</source><creator>Nishimura, Akiyuki ; Shimoda, Kakeru ; Tanaka, Tomohiro ; Toyama, Takashi ; Nishiyama, Kazuhiro ; Shinkai, Yasuhiro ; Numaga-Tomita, Takuro ; Yamazaki, Daiju ; Kanda, Yasunari ; Akaike, Takaaki ; Kumagai, Yoshito ; Nishida, Motohiro</creator><creatorcontrib>Nishimura, Akiyuki ; Shimoda, Kakeru ; Tanaka, Tomohiro ; Toyama, Takashi ; Nishiyama, Kazuhiro ; Shinkai, Yasuhiro ; Numaga-Tomita, Takuro ; Yamazaki, Daiju ; Kanda, Yasunari ; Akaike, Takaaki ; Kumagai, Yoshito ; Nishida, Motohiro</creatorcontrib><description>Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not induce weight loss typical of higher doses but caused mitochondrial hyperfission in myocardium through the activation of Drp1 by its guanine nucleotide exchange factor filamin-A. Treatment of neonatal rat cardiomyocytes with cilnidipine, an inhibitor of the interaction between Drp1 and filamin-A, suppressed mitochondrial hyperfission caused by low-dose MeHg exposure. Modification of cysteine residues in proteins with polysulfides is important for redox signaling and mitochondrial homeostasis in mammalian cells. We found that MeHg targeted rat Drp1 at Cys , a redox-sensitive residue whose SH side chain forms a bulky and nucleophilic polysulfide (Cys -S H). MeHg exposure induced the depolysulfidation of Cys -S H in Drp1, which led to filamin-dependent activation of Drp1 and mitochondrial hyperfission. Treatment with NaHS, which acts as a donor for reactive polysulfides, reversed MeHg-evoked Drp1 depolysulfidation and vulnerability to mechanical load in rodent and human cardiomyocytes and mouse hearts. These results suggest that depolysulfidation of Drp1 at Cys -S H by low-dose MeHg increases cardiac fragility to mechanical load through filamin-dependent mitochondrial hyperfission.</description><identifier>ISSN: 1945-0877</identifier><identifier>EISSN: 1937-9145</identifier><identifier>DOI: 10.1126/scisignal.aaw1920</identifier><identifier>PMID: 31239323</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Activation ; Cardiomyocytes ; Cardiovascular diseases ; Chronic exposure ; Cilnidipine ; Congestive heart failure ; Contaminants ; Dimethylmercury ; Environmental risk ; Exposure ; Fragility ; Guanine ; Guanine nucleotide exchange factor ; Health risks ; Heart failure ; Hemodynamics ; Homeostasis ; Mammalian cells ; Mechanical properties ; Mercury (metal) ; Methylmercury ; Mice ; Mitochondria ; Myocardium ; Neonates ; Neurotoxicity ; Nucleotides ; Pollutants ; Polysulfides ; Pressure ; Proteins ; Weight loss</subject><ispartof>Science signaling, 2019-06, Vol.12 (587)</ispartof><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83</citedby><cites>FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83</cites><orcidid>0000-0001-8322-3733 ; 0000-0002-6984-9016 ; 0000-0002-2587-5458 ; 0000-0003-2309-3994 ; 0000-0001-7442-4912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31239323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nishimura, Akiyuki</creatorcontrib><creatorcontrib>Shimoda, Kakeru</creatorcontrib><creatorcontrib>Tanaka, Tomohiro</creatorcontrib><creatorcontrib>Toyama, Takashi</creatorcontrib><creatorcontrib>Nishiyama, Kazuhiro</creatorcontrib><creatorcontrib>Shinkai, Yasuhiro</creatorcontrib><creatorcontrib>Numaga-Tomita, Takuro</creatorcontrib><creatorcontrib>Yamazaki, Daiju</creatorcontrib><creatorcontrib>Kanda, Yasunari</creatorcontrib><creatorcontrib>Akaike, Takaaki</creatorcontrib><creatorcontrib>Kumagai, Yoshito</creatorcontrib><creatorcontrib>Nishida, Motohiro</creatorcontrib><title>Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload</title><title>Science signaling</title><addtitle>Sci Signal</addtitle><description>Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not induce weight loss typical of higher doses but caused mitochondrial hyperfission in myocardium through the activation of Drp1 by its guanine nucleotide exchange factor filamin-A. Treatment of neonatal rat cardiomyocytes with cilnidipine, an inhibitor of the interaction between Drp1 and filamin-A, suppressed mitochondrial hyperfission caused by low-dose MeHg exposure. Modification of cysteine residues in proteins with polysulfides is important for redox signaling and mitochondrial homeostasis in mammalian cells. We found that MeHg targeted rat Drp1 at Cys , a redox-sensitive residue whose SH side chain forms a bulky and nucleophilic polysulfide (Cys -S H). MeHg exposure induced the depolysulfidation of Cys -S H in Drp1, which led to filamin-dependent activation of Drp1 and mitochondrial hyperfission. Treatment with NaHS, which acts as a donor for reactive polysulfides, reversed MeHg-evoked Drp1 depolysulfidation and vulnerability to mechanical load in rodent and human cardiomyocytes and mouse hearts. These results suggest that depolysulfidation of Drp1 at Cys -S H by low-dose MeHg increases cardiac fragility to mechanical load through filamin-dependent mitochondrial hyperfission.</description><subject>Activation</subject><subject>Cardiomyocytes</subject><subject>Cardiovascular diseases</subject><subject>Chronic exposure</subject><subject>Cilnidipine</subject><subject>Congestive heart failure</subject><subject>Contaminants</subject><subject>Dimethylmercury</subject><subject>Environmental risk</subject><subject>Exposure</subject><subject>Fragility</subject><subject>Guanine</subject><subject>Guanine nucleotide exchange factor</subject><subject>Health risks</subject><subject>Heart failure</subject><subject>Hemodynamics</subject><subject>Homeostasis</subject><subject>Mammalian cells</subject><subject>Mechanical properties</subject><subject>Mercury (metal)</subject><subject>Methylmercury</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Myocardium</subject><subject>Neonates</subject><subject>Neurotoxicity</subject><subject>Nucleotides</subject><subject>Pollutants</subject><subject>Polysulfides</subject><subject>Pressure</subject><subject>Proteins</subject><subject>Weight loss</subject><issn>1945-0877</issn><issn>1937-9145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkTtv1jAUhi0Eohf4ASzIEgtLiq-xPaIWClIlFpgjX06oKycOdtwSiR9PPvWjA9N5h-d9h_Mg9IaSC0pZ_6H6WOPP2aYLax-oYeQZOqWGq85QIZ8fspAd0UqdoLNa7wjpKWPmJTrhlHHDGT9Ff65gyWmrLY0x2DXmGecRX5WF4jiH5iFgt-GUH7qQK-AJ1tstTVB8KxuG30uurcCO-gK2QsXelhCtx_ctzVCsiymuG14zvoUph222U_Q430NJ2YZX6MVoU4XXx3uOfnz-9P3yS3fz7frr5cebzguu1867ngXFqCBEe0e0NEAsHaUwRIleUsWZUzIwF3oerA6EWE8JCCmdEtppfo7eP-4uJf9qUNdhitVDSnaG3OrA-D4tDDMH9N1_6F1uZX_xTjGpGNO65ztFHylfcq0FxmEpcbJlGygZDmqGJzXDUc3eeXtcbm6C8NT454L_Bascj0U</recordid><startdate>20190625</startdate><enddate>20190625</enddate><creator>Nishimura, Akiyuki</creator><creator>Shimoda, Kakeru</creator><creator>Tanaka, Tomohiro</creator><creator>Toyama, Takashi</creator><creator>Nishiyama, Kazuhiro</creator><creator>Shinkai, Yasuhiro</creator><creator>Numaga-Tomita, Takuro</creator><creator>Yamazaki, Daiju</creator><creator>Kanda, Yasunari</creator><creator>Akaike, Takaaki</creator><creator>Kumagai, Yoshito</creator><creator>Nishida, Motohiro</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8322-3733</orcidid><orcidid>https://orcid.org/0000-0002-6984-9016</orcidid><orcidid>https://orcid.org/0000-0002-2587-5458</orcidid><orcidid>https://orcid.org/0000-0003-2309-3994</orcidid><orcidid>https://orcid.org/0000-0001-7442-4912</orcidid></search><sort><creationdate>20190625</creationdate><title>Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload</title><author>Nishimura, Akiyuki ; Shimoda, Kakeru ; Tanaka, Tomohiro ; Toyama, Takashi ; Nishiyama, Kazuhiro ; Shinkai, Yasuhiro ; Numaga-Tomita, Takuro ; Yamazaki, Daiju ; Kanda, Yasunari ; Akaike, Takaaki ; Kumagai, Yoshito ; Nishida, Motohiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation</topic><topic>Cardiomyocytes</topic><topic>Cardiovascular diseases</topic><topic>Chronic exposure</topic><topic>Cilnidipine</topic><topic>Congestive heart failure</topic><topic>Contaminants</topic><topic>Dimethylmercury</topic><topic>Environmental risk</topic><topic>Exposure</topic><topic>Fragility</topic><topic>Guanine</topic><topic>Guanine nucleotide exchange factor</topic><topic>Health risks</topic><topic>Heart failure</topic><topic>Hemodynamics</topic><topic>Homeostasis</topic><topic>Mammalian cells</topic><topic>Mechanical properties</topic><topic>Mercury (metal)</topic><topic>Methylmercury</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Myocardium</topic><topic>Neonates</topic><topic>Neurotoxicity</topic><topic>Nucleotides</topic><topic>Pollutants</topic><topic>Polysulfides</topic><topic>Pressure</topic><topic>Proteins</topic><topic>Weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishimura, Akiyuki</creatorcontrib><creatorcontrib>Shimoda, Kakeru</creatorcontrib><creatorcontrib>Tanaka, Tomohiro</creatorcontrib><creatorcontrib>Toyama, Takashi</creatorcontrib><creatorcontrib>Nishiyama, Kazuhiro</creatorcontrib><creatorcontrib>Shinkai, Yasuhiro</creatorcontrib><creatorcontrib>Numaga-Tomita, Takuro</creatorcontrib><creatorcontrib>Yamazaki, Daiju</creatorcontrib><creatorcontrib>Kanda, Yasunari</creatorcontrib><creatorcontrib>Akaike, Takaaki</creatorcontrib><creatorcontrib>Kumagai, Yoshito</creatorcontrib><creatorcontrib>Nishida, Motohiro</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science signaling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishimura, Akiyuki</au><au>Shimoda, Kakeru</au><au>Tanaka, Tomohiro</au><au>Toyama, Takashi</au><au>Nishiyama, Kazuhiro</au><au>Shinkai, Yasuhiro</au><au>Numaga-Tomita, Takuro</au><au>Yamazaki, Daiju</au><au>Kanda, Yasunari</au><au>Akaike, Takaaki</au><au>Kumagai, Yoshito</au><au>Nishida, Motohiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload</atitle><jtitle>Science signaling</jtitle><addtitle>Sci Signal</addtitle><date>2019-06-25</date><risdate>2019</risdate><volume>12</volume><issue>587</issue><issn>1945-0877</issn><eissn>1937-9145</eissn><abstract>Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not induce weight loss typical of higher doses but caused mitochondrial hyperfission in myocardium through the activation of Drp1 by its guanine nucleotide exchange factor filamin-A. Treatment of neonatal rat cardiomyocytes with cilnidipine, an inhibitor of the interaction between Drp1 and filamin-A, suppressed mitochondrial hyperfission caused by low-dose MeHg exposure. Modification of cysteine residues in proteins with polysulfides is important for redox signaling and mitochondrial homeostasis in mammalian cells. We found that MeHg targeted rat Drp1 at Cys , a redox-sensitive residue whose SH side chain forms a bulky and nucleophilic polysulfide (Cys -S H). MeHg exposure induced the depolysulfidation of Cys -S H in Drp1, which led to filamin-dependent activation of Drp1 and mitochondrial hyperfission. Treatment with NaHS, which acts as a donor for reactive polysulfides, reversed MeHg-evoked Drp1 depolysulfidation and vulnerability to mechanical load in rodent and human cardiomyocytes and mouse hearts. These results suggest that depolysulfidation of Drp1 at Cys -S H by low-dose MeHg increases cardiac fragility to mechanical load through filamin-dependent mitochondrial hyperfission.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>31239323</pmid><doi>10.1126/scisignal.aaw1920</doi><orcidid>https://orcid.org/0000-0001-8322-3733</orcidid><orcidid>https://orcid.org/0000-0002-6984-9016</orcidid><orcidid>https://orcid.org/0000-0002-2587-5458</orcidid><orcidid>https://orcid.org/0000-0003-2309-3994</orcidid><orcidid>https://orcid.org/0000-0001-7442-4912</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1945-0877
ispartof Science signaling, 2019-06, Vol.12 (587)
issn 1945-0877
1937-9145
language eng
recordid cdi_proquest_miscellaneous_2340049298
source Alma/SFX Local Collection
subjects Activation
Cardiomyocytes
Cardiovascular diseases
Chronic exposure
Cilnidipine
Congestive heart failure
Contaminants
Dimethylmercury
Environmental risk
Exposure
Fragility
Guanine
Guanine nucleotide exchange factor
Health risks
Heart failure
Hemodynamics
Homeostasis
Mammalian cells
Mechanical properties
Mercury (metal)
Methylmercury
Mice
Mitochondria
Myocardium
Neonates
Neurotoxicity
Nucleotides
Pollutants
Polysulfides
Pressure
Proteins
Weight loss
title Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T16%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depolysulfidation%20of%20Drp1%20induced%20by%20low-dose%20methylmercury%20exposure%20increases%20cardiac%20vulnerability%20to%20hemodynamic%20overload&rft.jtitle=Science%20signaling&rft.au=Nishimura,%20Akiyuki&rft.date=2019-06-25&rft.volume=12&rft.issue=587&rft.issn=1945-0877&rft.eissn=1937-9145&rft_id=info:doi/10.1126/scisignal.aaw1920&rft_dat=%3Cproquest_cross%3E2340049298%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-cb62d7214008cb0859e0a1f549074651732b75d2bd63da8d00ac10e455b748b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2257228863&rft_id=info:pmid/31239323&rfr_iscdi=true