Loading…
Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning
Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this pape...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-cf159ff074f1d80e4461d04c8d2cd8fffb272551e001f630a61f7b41141267e73 |
---|---|
cites | |
container_end_page | 6548 |
container_issue | |
container_start_page | 6545 |
container_title | |
container_volume | 2019 |
creator | Sobhaninia, Zahra Rafiei, Shima Emami, Ali Karimi, Nader Najarian, Kayvan Samavi, Shadrokh Reza Soroushmehr, S. M. |
description | Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this paper, a multi-task deep convolutional neural network is proposed for automatic segmentation and estimation of HC ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Experimental results on fetus ultrasound dataset in different trimesters of pregnancy show that the segmentation results and the extracted HC match well with the radiologist annotations. The obtained dice scores of the fetal head segmentation and the accuracy of HC evaluations are comparable to the state-of-the-art. |
doi_str_mv | 10.1109/EMBC.2019.8856981 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2341617772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8856981</ieee_id><sourcerecordid>2341617772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-cf159ff074f1d80e4461d04c8d2cd8fffb272551e001f630a61f7b41141267e73</originalsourceid><addsrcrecordid>eNotkE1PAjEYhKuJiYj8AOOlRy-LfdvttnsUBCWBaCKcN2X3LanuB7bdA__eNXCaSebJZDKEPACbArD8ebGZzaecQT7VWma5hisyyZUGKXQGAkBekxFIqZM0A3lL7kL4ZowzJmFEcInR1HRXR29C17cVXTXmgPQLDw220UTXtdR2nm7QhN679kBnrmswelfST-PNYNEHugv_0aavo0u2JvzQV8QjXaPx7RDckxtr6oCTi47JbrnYzt-T9cfbav6yTkohZUxKCzK3lqnUQqUZpsPgiqWlrnhZaWvtnisuJSBjYDPBTAZW7VOAFHimUIkxeTr3Hn3322OIReNCiXVtWuz6UHCRQgZKKT6gj2fUIWJx9K4x_lRcDhR_JZFkUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2341617772</pqid></control><display><type>conference_proceeding</type><title>Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning</title><source>IEEE Xplore All Conference Series</source><creator>Sobhaninia, Zahra ; Rafiei, Shima ; Emami, Ali ; Karimi, Nader ; Najarian, Kayvan ; Samavi, Shadrokh ; Reza Soroushmehr, S. M.</creator><creatorcontrib>Sobhaninia, Zahra ; Rafiei, Shima ; Emami, Ali ; Karimi, Nader ; Najarian, Kayvan ; Samavi, Shadrokh ; Reza Soroushmehr, S. M.</creatorcontrib><description>Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this paper, a multi-task deep convolutional neural network is proposed for automatic segmentation and estimation of HC ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Experimental results on fetus ultrasound dataset in different trimesters of pregnancy show that the segmentation results and the extracted HC match well with the radiologist annotations. The obtained dice scores of the fetal head segmentation and the accuracy of HC evaluations are comparable to the state-of-the-art.</description><identifier>EISSN: 1558-4615</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 9781538613115</identifier><identifier>EISBN: 1538613115</identifier><identifier>DOI: 10.1109/EMBC.2019.8856981</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Head ; Image segmentation ; Training ; Tuners ; Ultrasonic imaging</subject><ispartof>2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, Vol.2019, p.6545-6548</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-cf159ff074f1d80e4461d04c8d2cd8fffb272551e001f630a61f7b41141267e73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sobhaninia, Zahra</creatorcontrib><creatorcontrib>Rafiei, Shima</creatorcontrib><creatorcontrib>Emami, Ali</creatorcontrib><creatorcontrib>Karimi, Nader</creatorcontrib><creatorcontrib>Najarian, Kayvan</creatorcontrib><creatorcontrib>Samavi, Shadrokh</creatorcontrib><creatorcontrib>Reza Soroushmehr, S. M.</creatorcontrib><title>Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning</title><title>2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><description>Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this paper, a multi-task deep convolutional neural network is proposed for automatic segmentation and estimation of HC ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Experimental results on fetus ultrasound dataset in different trimesters of pregnancy show that the segmentation results and the extracted HC match well with the radiologist annotations. The obtained dice scores of the fetal head segmentation and the accuracy of HC evaluations are comparable to the state-of-the-art.</description><subject>Biomedical imaging</subject><subject>Head</subject><subject>Image segmentation</subject><subject>Training</subject><subject>Tuners</subject><subject>Ultrasonic imaging</subject><issn>1558-4615</issn><issn>2694-0604</issn><isbn>9781538613115</isbn><isbn>1538613115</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1PAjEYhKuJiYj8AOOlRy-LfdvttnsUBCWBaCKcN2X3LanuB7bdA__eNXCaSebJZDKEPACbArD8ebGZzaecQT7VWma5hisyyZUGKXQGAkBekxFIqZM0A3lL7kL4ZowzJmFEcInR1HRXR29C17cVXTXmgPQLDw220UTXtdR2nm7QhN679kBnrmswelfST-PNYNEHugv_0aavo0u2JvzQV8QjXaPx7RDckxtr6oCTi47JbrnYzt-T9cfbav6yTkohZUxKCzK3lqnUQqUZpsPgiqWlrnhZaWvtnisuJSBjYDPBTAZW7VOAFHimUIkxeTr3Hn3322OIReNCiXVtWuz6UHCRQgZKKT6gj2fUIWJx9K4x_lRcDhR_JZFkUg</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Sobhaninia, Zahra</creator><creator>Rafiei, Shima</creator><creator>Emami, Ali</creator><creator>Karimi, Nader</creator><creator>Najarian, Kayvan</creator><creator>Samavi, Shadrokh</creator><creator>Reza Soroushmehr, S. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7X8</scope></search><sort><creationdate>20190701</creationdate><title>Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning</title><author>Sobhaninia, Zahra ; Rafiei, Shima ; Emami, Ali ; Karimi, Nader ; Najarian, Kayvan ; Samavi, Shadrokh ; Reza Soroushmehr, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-cf159ff074f1d80e4461d04c8d2cd8fffb272551e001f630a61f7b41141267e73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomedical imaging</topic><topic>Head</topic><topic>Image segmentation</topic><topic>Training</topic><topic>Tuners</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Sobhaninia, Zahra</creatorcontrib><creatorcontrib>Rafiei, Shima</creatorcontrib><creatorcontrib>Emami, Ali</creatorcontrib><creatorcontrib>Karimi, Nader</creatorcontrib><creatorcontrib>Najarian, Kayvan</creatorcontrib><creatorcontrib>Samavi, Shadrokh</creatorcontrib><creatorcontrib>Reza Soroushmehr, S. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sobhaninia, Zahra</au><au>Rafiei, Shima</au><au>Emami, Ali</au><au>Karimi, Nader</au><au>Najarian, Kayvan</au><au>Samavi, Shadrokh</au><au>Reza Soroushmehr, S. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning</atitle><btitle>2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</btitle><stitle>EMBC</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>2019</volume><spage>6545</spage><epage>6548</epage><pages>6545-6548</pages><eissn>1558-4615</eissn><eissn>2694-0604</eissn><eisbn>9781538613115</eisbn><eisbn>1538613115</eisbn><abstract>Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this paper, a multi-task deep convolutional neural network is proposed for automatic segmentation and estimation of HC ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Experimental results on fetus ultrasound dataset in different trimesters of pregnancy show that the segmentation results and the extracted HC match well with the radiologist annotations. The obtained dice scores of the fetal head segmentation and the accuracy of HC evaluations are comparable to the state-of-the-art.</abstract><pub>IEEE</pub><doi>10.1109/EMBC.2019.8856981</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1558-4615 |
ispartof | 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, Vol.2019, p.6545-6548 |
issn | 1558-4615 2694-0604 |
language | eng |
recordid | cdi_proquest_miscellaneous_2341617772 |
source | IEEE Xplore All Conference Series |
subjects | Biomedical imaging Head Image segmentation Training Tuners Ultrasonic imaging |
title | Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fetal%20Ultrasound%20Image%20Segmentation%20for%20Measuring%20Biometric%20Parameters%20Using%20Multi-Task%20Deep%20Learning&rft.btitle=2019%2041st%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Sobhaninia,%20Zahra&rft.date=2019-07-01&rft.volume=2019&rft.spage=6545&rft.epage=6548&rft.pages=6545-6548&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2019.8856981&rft.eisbn=9781538613115&rft.eisbn_list=1538613115&rft_dat=%3Cproquest_ieee_%3E2341617772%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-cf159ff074f1d80e4461d04c8d2cd8fffb272551e001f630a61f7b41141267e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2341617772&rft_id=info:pmid/&rft_ieee_id=8856981&rfr_iscdi=true |