Loading…

Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning

Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this pape...

Full description

Saved in:
Bibliographic Details
Main Authors: Sobhaninia, Zahra, Rafiei, Shima, Emami, Ali, Karimi, Nader, Najarian, Kayvan, Samavi, Shadrokh, Reza Soroushmehr, S. M.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-cf159ff074f1d80e4461d04c8d2cd8fffb272551e001f630a61f7b41141267e73
cites
container_end_page 6548
container_issue
container_start_page 6545
container_title
container_volume 2019
creator Sobhaninia, Zahra
Rafiei, Shima
Emami, Ali
Karimi, Nader
Najarian, Kayvan
Samavi, Shadrokh
Reza Soroushmehr, S. M.
description Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this paper, a multi-task deep convolutional neural network is proposed for automatic segmentation and estimation of HC ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Experimental results on fetus ultrasound dataset in different trimesters of pregnancy show that the segmentation results and the extracted HC match well with the radiologist annotations. The obtained dice scores of the fetal head segmentation and the accuracy of HC evaluations are comparable to the state-of-the-art.
doi_str_mv 10.1109/EMBC.2019.8856981
format conference_proceeding
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2341617772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8856981</ieee_id><sourcerecordid>2341617772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-cf159ff074f1d80e4461d04c8d2cd8fffb272551e001f630a61f7b41141267e73</originalsourceid><addsrcrecordid>eNotkE1PAjEYhKuJiYj8AOOlRy-LfdvttnsUBCWBaCKcN2X3LanuB7bdA__eNXCaSebJZDKEPACbArD8ebGZzaecQT7VWma5hisyyZUGKXQGAkBekxFIqZM0A3lL7kL4ZowzJmFEcInR1HRXR29C17cVXTXmgPQLDw220UTXtdR2nm7QhN679kBnrmswelfST-PNYNEHugv_0aavo0u2JvzQV8QjXaPx7RDckxtr6oCTi47JbrnYzt-T9cfbav6yTkohZUxKCzK3lqnUQqUZpsPgiqWlrnhZaWvtnisuJSBjYDPBTAZW7VOAFHimUIkxeTr3Hn3322OIReNCiXVtWuz6UHCRQgZKKT6gj2fUIWJx9K4x_lRcDhR_JZFkUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2341617772</pqid></control><display><type>conference_proceeding</type><title>Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning</title><source>IEEE Xplore All Conference Series</source><creator>Sobhaninia, Zahra ; Rafiei, Shima ; Emami, Ali ; Karimi, Nader ; Najarian, Kayvan ; Samavi, Shadrokh ; Reza Soroushmehr, S. M.</creator><creatorcontrib>Sobhaninia, Zahra ; Rafiei, Shima ; Emami, Ali ; Karimi, Nader ; Najarian, Kayvan ; Samavi, Shadrokh ; Reza Soroushmehr, S. M.</creatorcontrib><description>Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this paper, a multi-task deep convolutional neural network is proposed for automatic segmentation and estimation of HC ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Experimental results on fetus ultrasound dataset in different trimesters of pregnancy show that the segmentation results and the extracted HC match well with the radiologist annotations. The obtained dice scores of the fetal head segmentation and the accuracy of HC evaluations are comparable to the state-of-the-art.</description><identifier>EISSN: 1558-4615</identifier><identifier>EISSN: 2694-0604</identifier><identifier>EISBN: 9781538613115</identifier><identifier>EISBN: 1538613115</identifier><identifier>DOI: 10.1109/EMBC.2019.8856981</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical imaging ; Head ; Image segmentation ; Training ; Tuners ; Ultrasonic imaging</subject><ispartof>2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, Vol.2019, p.6545-6548</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-cf159ff074f1d80e4461d04c8d2cd8fffb272551e001f630a61f7b41141267e73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sobhaninia, Zahra</creatorcontrib><creatorcontrib>Rafiei, Shima</creatorcontrib><creatorcontrib>Emami, Ali</creatorcontrib><creatorcontrib>Karimi, Nader</creatorcontrib><creatorcontrib>Najarian, Kayvan</creatorcontrib><creatorcontrib>Samavi, Shadrokh</creatorcontrib><creatorcontrib>Reza Soroushmehr, S. M.</creatorcontrib><title>Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning</title><title>2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</title><addtitle>EMBC</addtitle><description>Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this paper, a multi-task deep convolutional neural network is proposed for automatic segmentation and estimation of HC ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Experimental results on fetus ultrasound dataset in different trimesters of pregnancy show that the segmentation results and the extracted HC match well with the radiologist annotations. The obtained dice scores of the fetal head segmentation and the accuracy of HC evaluations are comparable to the state-of-the-art.</description><subject>Biomedical imaging</subject><subject>Head</subject><subject>Image segmentation</subject><subject>Training</subject><subject>Tuners</subject><subject>Ultrasonic imaging</subject><issn>1558-4615</issn><issn>2694-0604</issn><isbn>9781538613115</isbn><isbn>1538613115</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1PAjEYhKuJiYj8AOOlRy-LfdvttnsUBCWBaCKcN2X3LanuB7bdA__eNXCaSebJZDKEPACbArD8ebGZzaecQT7VWma5hisyyZUGKXQGAkBekxFIqZM0A3lL7kL4ZowzJmFEcInR1HRXR29C17cVXTXmgPQLDw220UTXtdR2nm7QhN679kBnrmswelfST-PNYNEHugv_0aavo0u2JvzQV8QjXaPx7RDckxtr6oCTi47JbrnYzt-T9cfbav6yTkohZUxKCzK3lqnUQqUZpsPgiqWlrnhZaWvtnisuJSBjYDPBTAZW7VOAFHimUIkxeTr3Hn3322OIReNCiXVtWuz6UHCRQgZKKT6gj2fUIWJx9K4x_lRcDhR_JZFkUg</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Sobhaninia, Zahra</creator><creator>Rafiei, Shima</creator><creator>Emami, Ali</creator><creator>Karimi, Nader</creator><creator>Najarian, Kayvan</creator><creator>Samavi, Shadrokh</creator><creator>Reza Soroushmehr, S. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7X8</scope></search><sort><creationdate>20190701</creationdate><title>Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning</title><author>Sobhaninia, Zahra ; Rafiei, Shima ; Emami, Ali ; Karimi, Nader ; Najarian, Kayvan ; Samavi, Shadrokh ; Reza Soroushmehr, S. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-cf159ff074f1d80e4461d04c8d2cd8fffb272551e001f630a61f7b41141267e73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomedical imaging</topic><topic>Head</topic><topic>Image segmentation</topic><topic>Training</topic><topic>Tuners</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Sobhaninia, Zahra</creatorcontrib><creatorcontrib>Rafiei, Shima</creatorcontrib><creatorcontrib>Emami, Ali</creatorcontrib><creatorcontrib>Karimi, Nader</creatorcontrib><creatorcontrib>Najarian, Kayvan</creatorcontrib><creatorcontrib>Samavi, Shadrokh</creatorcontrib><creatorcontrib>Reza Soroushmehr, S. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>MEDLINE - Academic</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sobhaninia, Zahra</au><au>Rafiei, Shima</au><au>Emami, Ali</au><au>Karimi, Nader</au><au>Najarian, Kayvan</au><au>Samavi, Shadrokh</au><au>Reza Soroushmehr, S. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning</atitle><btitle>2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)</btitle><stitle>EMBC</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>2019</volume><spage>6545</spage><epage>6548</epage><pages>6545-6548</pages><eissn>1558-4615</eissn><eissn>2694-0604</eissn><eisbn>9781538613115</eisbn><eisbn>1538613115</eisbn><abstract>Ultrasound imaging is a standard examination during pregnancy that can be used for measuring specific biometric parameters towards prenatal diagnosis and estimating gestational age. Fetal head circumference (HC) is one of the significant factors to determine the fetus growth and health. In this paper, a multi-task deep convolutional neural network is proposed for automatic segmentation and estimation of HC ellipse by minimizing a compound cost function composed of segmentation dice score and MSE of ellipse parameters. Experimental results on fetus ultrasound dataset in different trimesters of pregnancy show that the segmentation results and the extracted HC match well with the radiologist annotations. The obtained dice scores of the fetal head segmentation and the accuracy of HC evaluations are comparable to the state-of-the-art.</abstract><pub>IEEE</pub><doi>10.1109/EMBC.2019.8856981</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1558-4615
ispartof 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, Vol.2019, p.6545-6548
issn 1558-4615
2694-0604
language eng
recordid cdi_proquest_miscellaneous_2341617772
source IEEE Xplore All Conference Series
subjects Biomedical imaging
Head
Image segmentation
Training
Tuners
Ultrasonic imaging
title Fetal Ultrasound Image Segmentation for Measuring Biometric Parameters Using Multi-Task Deep Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fetal%20Ultrasound%20Image%20Segmentation%20for%20Measuring%20Biometric%20Parameters%20Using%20Multi-Task%20Deep%20Learning&rft.btitle=2019%2041st%20Annual%20International%20Conference%20of%20the%20IEEE%20Engineering%20in%20Medicine%20and%20Biology%20Society%20(EMBC)&rft.au=Sobhaninia,%20Zahra&rft.date=2019-07-01&rft.volume=2019&rft.spage=6545&rft.epage=6548&rft.pages=6545-6548&rft.eissn=1558-4615&rft_id=info:doi/10.1109/EMBC.2019.8856981&rft.eisbn=9781538613115&rft.eisbn_list=1538613115&rft_dat=%3Cproquest_ieee_%3E2341617772%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-cf159ff074f1d80e4461d04c8d2cd8fffb272551e001f630a61f7b41141267e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2341617772&rft_id=info:pmid/&rft_ieee_id=8856981&rfr_iscdi=true