Loading…
Scaffold‐ and serum‐free hypertrophic cartilage tissue engineering as an alternative approach for bone repair
Human adipose stem/stromal cell (ASC) spheroids were used as a serum‐free in vitro model to recapitulate the molecular events and extracellular matrix organization that orchestrate a hypertrophic cartilage phenotype. Induced‐ASC spheroids (ø = 450 µm) showed high cell viability throughout the period...
Saved in:
Published in: | Artificial organs 2020-07, Vol.44 (7), p.E288-E299 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human adipose stem/stromal cell (ASC) spheroids were used as a serum‐free in vitro model to recapitulate the molecular events and extracellular matrix organization that orchestrate a hypertrophic cartilage phenotype. Induced‐ASC spheroids (ø = 450 µm) showed high cell viability throughout the period of culture. The expression of collagen type X alpha 1 chain (COLXA1) and matrix metallopeptidase 13 (MMP‐13) was upregulated at week 2 in induced‐ASC spheroids compared with week 5 (P |
---|---|
ISSN: | 0160-564X 1525-1594 |
DOI: | 10.1111/aor.13637 |