Loading…

Coupled effect of colloids and surface chemical heterogeneity on the transport of antibiotics in porous media

Release of antibiotics into the environment has caused ecological and human health concerns in recent years. However, little is known about their transport behaviors in chemically heterogeneous porous media. In this study, we investigated the coupled effects of surface chemistry and soil colloids on...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2020-04, Vol.713, p.136644-136644, Article 136644
Main Authors: Xing, Yingna, Chen, Xin, Wagner, Regan E., Zhuang, Jie, Chen, Xijuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Release of antibiotics into the environment has caused ecological and human health concerns in recent years. However, little is known about their transport behaviors in chemically heterogeneous porous media. In this study, we investigated the coupled effects of surface chemistry and soil colloids on the transport of ciprofloxacin and tetracycline through sand under steady state saturated flow conditions. Both antibiotics had a much higher capacity of adsorption on soil colloids (17,500 mg/kg for ciprofloxacin and 8600 mg/kg for tetracycline) than on sand (5.11 mg/kg for ciprofloxacin and 2.80 mg/kg for tetracycline). However, ciprofloxacin adsorption increased to 8.91 mg/kg after the sand was coated with iron oxide and to 8.73 mg/kg after the sand was coated with humic acid. Tetracycline, adsorption increased to 7.99 mg/kg after sand was coated with iron oxide coated sand and to 8.35 mg/kg after the sand was coated with humic acid coated The high adsorption capacity of ciprofloxacin led to a recovery rate of
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2020.136644