Loading…

Exploring movement decisions: Can Bayesian movement‐state models explain crop consumption behaviour in elephants (Loxodonta africana)?

Animal movements towards goals or targets are based upon either maximization of resource acquisition or risk avoidance, and the way animals move can reveal information about their motivation. We use hidden Markov models (HMMs) fitted in a Bayesian framework and hourly Global Positioning System fixes...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of animal ecology 2020-04, Vol.89 (4), p.1055-1068
Main Authors: Vogel, Susanne Marieke, Lambert, Ben, Songhurst, Anna Catherine, McCulloch, Graham Paul, Stronza, Amanda Lee, Coulson, Tim, Börger, Luca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Animal movements towards goals or targets are based upon either maximization of resource acquisition or risk avoidance, and the way animals move can reveal information about their motivation. We use hidden Markov models (HMMs) fitted in a Bayesian framework and hourly Global Positioning System fixes to distinguish animal movements into distinct states and analyse the influence of environmental variables on being in, and switching to, a particular state. Specifically, we apply our models to understand elephant movement decisions around agricultural fields, and crop consumption. As it is unclear what the role of habitat features are on this complex process, we analyse whether elephants target agricultural crops for consumption, or simply pass through them in search of water. Our HMMs separate elephant movements into two states: exploratory movements that are fast and directional, and encamped movements that are slow and meandering. For each elephant, we ran 16 models with each possible combination of selected habitat features (river, elephant corridor, agricultural field, trees), and repeated these analyses including interaction effects with both season and time of day. We used cross‐validation to select the best model. In corridors, exploratory movements are dominant. Elephants mainly showed encamped movements at the river during the dry season, when temporary water sources have dried out and elephants relied on this permanent water source. In fields, males most often exhibited exploratory movements to and from the river, while females showed an increase in the frequency of encamped behaviour during the dry season and at night—the times when most crop consumption and movements through fields occur. Adaptation to risk could explain this behaviour, since foraging in fields is likely less risky under the cover of darkness and during the dry season when farmers are absent. This sex segregation in elephant movement decisions highlights the importance of predation risk in shaping movement patterns, which can result in sex segregation in responses to mitigation methods. The increase in encamped movements in the dry season suggests the importance of agricultural timing, and shows the potential for early ploughing and early‐harvest crop types in order to reduce elephant crop consumption. Taking this into account could increase efficiency of elephant crop consumption mitigation. The authors study is a novel application of hidden‐Markov movement models to address an u
ISSN:0021-8790
1365-2656
DOI:10.1111/1365-2656.13177