Loading…

Heat Transfer Effects on Defect Boundaries Captured by Digital Holographic Interferometry and Infrared Thermography Workstation: an Overview on Experimental Results

The heat transfer effect is observed from existing defects through heat diffusion to the sound area of the sample in long term after the sample has reached values close to the initial, signifying equilibrium with the environment. Two complementary systems providing the kinetic and thermal informatio...

Full description

Saved in:
Bibliographic Details
Published in:Experimental techniques (Westport, Conn.) Conn.), 2020-02, Vol.44 (1), p.59-74
Main Authors: Tornari, V., Andrianakis, M., Chaban, A., Kosma, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-a07851540234d2147184f203459bf4f41117be510cfa6a0a5d3438bb62a165263
cites cdi_FETCH-LOGICAL-c324t-a07851540234d2147184f203459bf4f41117be510cfa6a0a5d3438bb62a165263
container_end_page 74
container_issue 1
container_start_page 59
container_title Experimental techniques (Westport, Conn.)
container_volume 44
creator Tornari, V.
Andrianakis, M.
Chaban, A.
Kosma, K.
description The heat transfer effect is observed from existing defects through heat diffusion to the sound area of the sample in long term after the sample has reached values close to the initial, signifying equilibrium with the environment. Two complementary systems providing the kinetic and thermal information of the samples were used to construct a real-time monitoring workstation in order to monitor the real-time responses of the sample after thermal excitation. Results indicate that the defect boundaries and the sound non-defect area continue to exchange thermal values long after the total area of the sample reaches initial temperature in equilibrium with environment. Hence, it is here suggested that the continuous aging of artworks in controlled environments may be a result of the ongoing low thermal heat transfer from the defect to the sound areas provoking a slow but steady surface displacement and consequently deterioration mechanism against the preventive conservation measures based on environmental equilibrium.
doi_str_mv 10.1007/s40799-019-00336-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2343272639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2343272639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-a07851540234d2147184f203459bf4f41117be510cfa6a0a5d3438bb62a165263</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EEkvhBTj5yCXgf4kTbrDdspUqVUKLOFpOMt6mZO0wdrrs-_CgOIQzh9GMrN_3jUcfIW85e88Z0x-iYrppCsZzMSmr4vyMbLhWuuBlpZ-TDdNSFHXN65fkVYyPjPGS62ZDfu_BJnpA66MDpDvnoEuRBk-vYRnp5zD73uIAkW7tlGaEnrYXej0ch2RHug9jOKKdHoaO3voEmF3CCRJeqPV9fnJoF8nhAfC0khf6PeCPmGwagv-YMXr_BPg0wHlZu_s1AQ4n8Iv7V4jzmOJr8sLZMcKbf_2KfLvZHbb74u7-y-32013RSaFSYZmuS14qJqTqBVea18oJJlXZtE45xTnXLZScdc5Wltmyl0rWbVsJy6tSVPKKvFt9Jww_Z4jJnIbYwThaD2GOJvtKoTPYZFSsaIchRgRnpvxrixfDmVkiMWskJkdi_kZizlkkV1HMsD8Cmscwo88n_U_1B5Sckh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343272639</pqid></control><display><type>article</type><title>Heat Transfer Effects on Defect Boundaries Captured by Digital Holographic Interferometry and Infrared Thermography Workstation: an Overview on Experimental Results</title><source>Springer Link</source><creator>Tornari, V. ; Andrianakis, M. ; Chaban, A. ; Kosma, K.</creator><creatorcontrib>Tornari, V. ; Andrianakis, M. ; Chaban, A. ; Kosma, K.</creatorcontrib><description>The heat transfer effect is observed from existing defects through heat diffusion to the sound area of the sample in long term after the sample has reached values close to the initial, signifying equilibrium with the environment. Two complementary systems providing the kinetic and thermal information of the samples were used to construct a real-time monitoring workstation in order to monitor the real-time responses of the sample after thermal excitation. Results indicate that the defect boundaries and the sound non-defect area continue to exchange thermal values long after the total area of the sample reaches initial temperature in equilibrium with environment. Hence, it is here suggested that the continuous aging of artworks in controlled environments may be a result of the ongoing low thermal heat transfer from the defect to the sound areas provoking a slow but steady surface displacement and consequently deterioration mechanism against the preventive conservation measures based on environmental equilibrium.</description><identifier>ISSN: 0732-8818</identifier><identifier>EISSN: 1747-1567</identifier><identifier>DOI: 10.1007/s40799-019-00336-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundaries ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Defects ; Equilibrium ; Heat exchange ; Heat transfer ; Holographic interferometry ; Infrared imaging ; Materials Science ; Real time ; Sound ; Thermography ; Work stations ; Workstations</subject><ispartof>Experimental techniques (Westport, Conn.), 2020-02, Vol.44 (1), p.59-74</ispartof><rights>The Society for Experimental Mechanics, Inc 2019</rights><rights>2019© The Society for Experimental Mechanics, Inc 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-a07851540234d2147184f203459bf4f41117be510cfa6a0a5d3438bb62a165263</citedby><cites>FETCH-LOGICAL-c324t-a07851540234d2147184f203459bf4f41117be510cfa6a0a5d3438bb62a165263</cites><orcidid>0000-0003-3536-9871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tornari, V.</creatorcontrib><creatorcontrib>Andrianakis, M.</creatorcontrib><creatorcontrib>Chaban, A.</creatorcontrib><creatorcontrib>Kosma, K.</creatorcontrib><title>Heat Transfer Effects on Defect Boundaries Captured by Digital Holographic Interferometry and Infrared Thermography Workstation: an Overview on Experimental Results</title><title>Experimental techniques (Westport, Conn.)</title><addtitle>Exp Tech</addtitle><description>The heat transfer effect is observed from existing defects through heat diffusion to the sound area of the sample in long term after the sample has reached values close to the initial, signifying equilibrium with the environment. Two complementary systems providing the kinetic and thermal information of the samples were used to construct a real-time monitoring workstation in order to monitor the real-time responses of the sample after thermal excitation. Results indicate that the defect boundaries and the sound non-defect area continue to exchange thermal values long after the total area of the sample reaches initial temperature in equilibrium with environment. Hence, it is here suggested that the continuous aging of artworks in controlled environments may be a result of the ongoing low thermal heat transfer from the defect to the sound areas provoking a slow but steady surface displacement and consequently deterioration mechanism against the preventive conservation measures based on environmental equilibrium.</description><subject>Boundaries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Defects</subject><subject>Equilibrium</subject><subject>Heat exchange</subject><subject>Heat transfer</subject><subject>Holographic interferometry</subject><subject>Infrared imaging</subject><subject>Materials Science</subject><subject>Real time</subject><subject>Sound</subject><subject>Thermography</subject><subject>Work stations</subject><subject>Workstations</subject><issn>0732-8818</issn><issn>1747-1567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQxi0EEkvhBTj5yCXgf4kTbrDdspUqVUKLOFpOMt6mZO0wdrrs-_CgOIQzh9GMrN_3jUcfIW85e88Z0x-iYrppCsZzMSmr4vyMbLhWuuBlpZ-TDdNSFHXN65fkVYyPjPGS62ZDfu_BJnpA66MDpDvnoEuRBk-vYRnp5zD73uIAkW7tlGaEnrYXej0ch2RHug9jOKKdHoaO3voEmF3CCRJeqPV9fnJoF8nhAfC0khf6PeCPmGwagv-YMXr_BPg0wHlZu_s1AQ4n8Iv7V4jzmOJr8sLZMcKbf_2KfLvZHbb74u7-y-32013RSaFSYZmuS14qJqTqBVea18oJJlXZtE45xTnXLZScdc5Wltmyl0rWbVsJy6tSVPKKvFt9Jww_Z4jJnIbYwThaD2GOJvtKoTPYZFSsaIchRgRnpvxrixfDmVkiMWskJkdi_kZizlkkV1HMsD8Cmscwo88n_U_1B5Sckh8</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Tornari, V.</creator><creator>Andrianakis, M.</creator><creator>Chaban, A.</creator><creator>Kosma, K.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-3536-9871</orcidid></search><sort><creationdate>20200201</creationdate><title>Heat Transfer Effects on Defect Boundaries Captured by Digital Holographic Interferometry and Infrared Thermography Workstation: an Overview on Experimental Results</title><author>Tornari, V. ; Andrianakis, M. ; Chaban, A. ; Kosma, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-a07851540234d2147184f203459bf4f41117be510cfa6a0a5d3438bb62a165263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundaries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Defects</topic><topic>Equilibrium</topic><topic>Heat exchange</topic><topic>Heat transfer</topic><topic>Holographic interferometry</topic><topic>Infrared imaging</topic><topic>Materials Science</topic><topic>Real time</topic><topic>Sound</topic><topic>Thermography</topic><topic>Work stations</topic><topic>Workstations</topic><toplevel>online_resources</toplevel><creatorcontrib>Tornari, V.</creatorcontrib><creatorcontrib>Andrianakis, M.</creatorcontrib><creatorcontrib>Chaban, A.</creatorcontrib><creatorcontrib>Kosma, K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Experimental techniques (Westport, Conn.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tornari, V.</au><au>Andrianakis, M.</au><au>Chaban, A.</au><au>Kosma, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat Transfer Effects on Defect Boundaries Captured by Digital Holographic Interferometry and Infrared Thermography Workstation: an Overview on Experimental Results</atitle><jtitle>Experimental techniques (Westport, Conn.)</jtitle><stitle>Exp Tech</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>44</volume><issue>1</issue><spage>59</spage><epage>74</epage><pages>59-74</pages><issn>0732-8818</issn><eissn>1747-1567</eissn><abstract>The heat transfer effect is observed from existing defects through heat diffusion to the sound area of the sample in long term after the sample has reached values close to the initial, signifying equilibrium with the environment. Two complementary systems providing the kinetic and thermal information of the samples were used to construct a real-time monitoring workstation in order to monitor the real-time responses of the sample after thermal excitation. Results indicate that the defect boundaries and the sound non-defect area continue to exchange thermal values long after the total area of the sample reaches initial temperature in equilibrium with environment. Hence, it is here suggested that the continuous aging of artworks in controlled environments may be a result of the ongoing low thermal heat transfer from the defect to the sound areas provoking a slow but steady surface displacement and consequently deterioration mechanism against the preventive conservation measures based on environmental equilibrium.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40799-019-00336-w</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3536-9871</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0732-8818
ispartof Experimental techniques (Westport, Conn.), 2020-02, Vol.44 (1), p.59-74
issn 0732-8818
1747-1567
language eng
recordid cdi_proquest_miscellaneous_2343272639
source Springer Link
subjects Boundaries
Characterization and Evaluation of Materials
Chemistry and Materials Science
Defects
Equilibrium
Heat exchange
Heat transfer
Holographic interferometry
Infrared imaging
Materials Science
Real time
Sound
Thermography
Work stations
Workstations
title Heat Transfer Effects on Defect Boundaries Captured by Digital Holographic Interferometry and Infrared Thermography Workstation: an Overview on Experimental Results
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20Transfer%20Effects%20on%20Defect%20Boundaries%20Captured%20by%20Digital%20Holographic%20Interferometry%20and%20Infrared%20Thermography%20Workstation:%20an%20Overview%20on%20Experimental%20Results&rft.jtitle=Experimental%20techniques%20(Westport,%20Conn.)&rft.au=Tornari,%20V.&rft.date=2020-02-01&rft.volume=44&rft.issue=1&rft.spage=59&rft.epage=74&rft.pages=59-74&rft.issn=0732-8818&rft.eissn=1747-1567&rft_id=info:doi/10.1007/s40799-019-00336-w&rft_dat=%3Cproquest_cross%3E2343272639%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-a07851540234d2147184f203459bf4f41117be510cfa6a0a5d3438bb62a165263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2343272639&rft_id=info:pmid/&rfr_iscdi=true