Loading…

Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons

Van der Waals (vdW) materials host a variety of polaritons, which make them an emerging material platform for manipulating light at the nanoscale. Due to the layered structure of vdW materials, the polaritons can exhibit a hyperbolic dispersion and propagate as nanoscale‐confined volume modes in thi...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2020-03, Vol.32 (9), p.e1906530-n/a
Main Authors: Dolado, Irene, Alfaro‐Mozaz, Francisco Javier, Li, Peining, Nikulina, Elizaveta, Bylinkin, Andrei, Liu, Song, Edgar, James H., Casanova, Felix, Hueso, Luis E., Alonso‐González, Pablo, Vélez, Saül, Nikitin, Alexey Y., Hillenbrand, Rainer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4130-7aef27a55f7d1ada7e82c0810af54237f10edadd8461a3b0e1e371e120cb19b3
cites cdi_FETCH-LOGICAL-c4130-7aef27a55f7d1ada7e82c0810af54237f10edadd8461a3b0e1e371e120cb19b3
container_end_page n/a
container_issue 9
container_start_page e1906530
container_title Advanced materials (Weinheim)
container_volume 32
creator Dolado, Irene
Alfaro‐Mozaz, Francisco Javier
Li, Peining
Nikulina, Elizaveta
Bylinkin, Andrei
Liu, Song
Edgar, James H.
Casanova, Felix
Hueso, Luis E.
Alonso‐González, Pablo
Vélez, Saül
Nikitin, Alexey Y.
Hillenbrand, Rainer
description Van der Waals (vdW) materials host a variety of polaritons, which make them an emerging material platform for manipulating light at the nanoscale. Due to the layered structure of vdW materials, the polaritons can exhibit a hyperbolic dispersion and propagate as nanoscale‐confined volume modes in thin flakes. On the other hand, surface‐confined modes can be found at the flake edges. Surprisingly, the guiding of these modes in ribbons—representing typical linear waveguide structures—is widely unexplored. Here, a detailed study of hyperbolic phonon polaritons propagating in hexagonal boron nitride ribbons is reported. Employing infrared nanoimaging, a variety of modes are observed. Particularly, the fundamental volume waveguide mode that exhibits a cutoff width is identified, which, interestingly, can be lowered by reducing the waveguide thickness. Further, hybridization of the surface modes and their evolution with varying frequency and waveguide width are observed. Most importantly, it is demonstrated that the symmetrically hybridized surface mode does not exhibit a cutoff width, and thus enables linear waveguiding of the polaritons in arbitrarily narrow ribbons. The experimental data, supported by simulations, establish a solid basis for the understanding of hyperbolic polaritons in linear waveguides, which is of critical importance for their application in future photonic devices. Infrared nanoimaging and theoretical simulations are applied to study phonon polariton waveguide modes in nanoscale hexagonal boron nitride ribbons. Fundamental volume and hybridized surface modes are identified. Most importantly, the symmetrically hybridized surface mode does not exhibit a cutoff width, and thus allows for linear waveguiding of infrared energy in the narrowest ribbons that can be fabricated.
doi_str_mv 10.1002/adma.201906530
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2344265430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2369748171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4130-7aef27a55f7d1ada7e82c0810af54237f10edadd8461a3b0e1e371e120cb19b3</originalsourceid><addsrcrecordid>eNqF0UFv1DAQBWALgehSuHJElrhwyTITJ3FyXBVoK20BQQXHaBKPW1dOvLUTqv33pNpSJC6cLI2-eRr5CfEaYY0A-XsyA61zwAaqUsETscIyx6yApnwqVtCoMmuqoj4SL1K6AYCmguq5OFLYaI2IK5E-0xhST57l6eyMG69ksPJ8tJEiG7l1V9eTvHPTtTzb7zh2wbte_gh-HljSaOT3OVrqWX4NnqKbwpikG-UvGqXhKH8S-SQvaOLoyMtvrusW8VI8s8ucXz28x-Ly08fLk7Ns--X0_GSzzfoCFWSa2OaaytJqg2RIc533UCOQLYtcaYvAhoypiwpJdcDISiNjDn2HTaeOxbtD7C6G25nT1A4u9ew9jRzm1OaqKPKqLBQs9O0_9CbMcVyOW1TV6KJGjYtaH1QfQ0qRbbuLbqC4bxHa-zba-zbaxzaWhTcPsXM3sHnkf75_Ac0B3DnP-__EtZsPF5u_4b8Bro-WUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369748171</pqid></control><display><type>article</type><title>Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons</title><source>Wiley</source><creator>Dolado, Irene ; Alfaro‐Mozaz, Francisco Javier ; Li, Peining ; Nikulina, Elizaveta ; Bylinkin, Andrei ; Liu, Song ; Edgar, James H. ; Casanova, Felix ; Hueso, Luis E. ; Alonso‐González, Pablo ; Vélez, Saül ; Nikitin, Alexey Y. ; Hillenbrand, Rainer</creator><creatorcontrib>Dolado, Irene ; Alfaro‐Mozaz, Francisco Javier ; Li, Peining ; Nikulina, Elizaveta ; Bylinkin, Andrei ; Liu, Song ; Edgar, James H. ; Casanova, Felix ; Hueso, Luis E. ; Alonso‐González, Pablo ; Vélez, Saül ; Nikitin, Alexey Y. ; Hillenbrand, Rainer</creatorcontrib><description>Van der Waals (vdW) materials host a variety of polaritons, which make them an emerging material platform for manipulating light at the nanoscale. Due to the layered structure of vdW materials, the polaritons can exhibit a hyperbolic dispersion and propagate as nanoscale‐confined volume modes in thin flakes. On the other hand, surface‐confined modes can be found at the flake edges. Surprisingly, the guiding of these modes in ribbons—representing typical linear waveguide structures—is widely unexplored. Here, a detailed study of hyperbolic phonon polaritons propagating in hexagonal boron nitride ribbons is reported. Employing infrared nanoimaging, a variety of modes are observed. Particularly, the fundamental volume waveguide mode that exhibits a cutoff width is identified, which, interestingly, can be lowered by reducing the waveguide thickness. Further, hybridization of the surface modes and their evolution with varying frequency and waveguide width are observed. Most importantly, it is demonstrated that the symmetrically hybridized surface mode does not exhibit a cutoff width, and thus enables linear waveguiding of the polaritons in arbitrarily narrow ribbons. The experimental data, supported by simulations, establish a solid basis for the understanding of hyperbolic polaritons in linear waveguides, which is of critical importance for their application in future photonic devices. Infrared nanoimaging and theoretical simulations are applied to study phonon polariton waveguide modes in nanoscale hexagonal boron nitride ribbons. Fundamental volume and hybridized surface modes are identified. Most importantly, the symmetrically hybridized surface mode does not exhibit a cutoff width, and thus allows for linear waveguiding of infrared energy in the narrowest ribbons that can be fabricated.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201906530</identifier><identifier>PMID: 31977111</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Boron nitride ; Flakes ; hexagonal boron nitride ; hyperbolic phonon polaritons ; Infrared radiation ; linear waveguides ; Materials science ; mid‐infrared ; Photonics ; Polaritons ; s‐SNOM ; Waveguides</subject><ispartof>Advanced materials (Weinheim), 2020-03, Vol.32 (9), p.e1906530-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4130-7aef27a55f7d1ada7e82c0810af54237f10edadd8461a3b0e1e371e120cb19b3</citedby><cites>FETCH-LOGICAL-c4130-7aef27a55f7d1ada7e82c0810af54237f10edadd8461a3b0e1e371e120cb19b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31977111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolado, Irene</creatorcontrib><creatorcontrib>Alfaro‐Mozaz, Francisco Javier</creatorcontrib><creatorcontrib>Li, Peining</creatorcontrib><creatorcontrib>Nikulina, Elizaveta</creatorcontrib><creatorcontrib>Bylinkin, Andrei</creatorcontrib><creatorcontrib>Liu, Song</creatorcontrib><creatorcontrib>Edgar, James H.</creatorcontrib><creatorcontrib>Casanova, Felix</creatorcontrib><creatorcontrib>Hueso, Luis E.</creatorcontrib><creatorcontrib>Alonso‐González, Pablo</creatorcontrib><creatorcontrib>Vélez, Saül</creatorcontrib><creatorcontrib>Nikitin, Alexey Y.</creatorcontrib><creatorcontrib>Hillenbrand, Rainer</creatorcontrib><title>Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Van der Waals (vdW) materials host a variety of polaritons, which make them an emerging material platform for manipulating light at the nanoscale. Due to the layered structure of vdW materials, the polaritons can exhibit a hyperbolic dispersion and propagate as nanoscale‐confined volume modes in thin flakes. On the other hand, surface‐confined modes can be found at the flake edges. Surprisingly, the guiding of these modes in ribbons—representing typical linear waveguide structures—is widely unexplored. Here, a detailed study of hyperbolic phonon polaritons propagating in hexagonal boron nitride ribbons is reported. Employing infrared nanoimaging, a variety of modes are observed. Particularly, the fundamental volume waveguide mode that exhibits a cutoff width is identified, which, interestingly, can be lowered by reducing the waveguide thickness. Further, hybridization of the surface modes and their evolution with varying frequency and waveguide width are observed. Most importantly, it is demonstrated that the symmetrically hybridized surface mode does not exhibit a cutoff width, and thus enables linear waveguiding of the polaritons in arbitrarily narrow ribbons. The experimental data, supported by simulations, establish a solid basis for the understanding of hyperbolic polaritons in linear waveguides, which is of critical importance for their application in future photonic devices. Infrared nanoimaging and theoretical simulations are applied to study phonon polariton waveguide modes in nanoscale hexagonal boron nitride ribbons. Fundamental volume and hybridized surface modes are identified. Most importantly, the symmetrically hybridized surface mode does not exhibit a cutoff width, and thus allows for linear waveguiding of infrared energy in the narrowest ribbons that can be fabricated.</description><subject>Boron nitride</subject><subject>Flakes</subject><subject>hexagonal boron nitride</subject><subject>hyperbolic phonon polaritons</subject><subject>Infrared radiation</subject><subject>linear waveguides</subject><subject>Materials science</subject><subject>mid‐infrared</subject><subject>Photonics</subject><subject>Polaritons</subject><subject>s‐SNOM</subject><subject>Waveguides</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0UFv1DAQBWALgehSuHJElrhwyTITJ3FyXBVoK20BQQXHaBKPW1dOvLUTqv33pNpSJC6cLI2-eRr5CfEaYY0A-XsyA61zwAaqUsETscIyx6yApnwqVtCoMmuqoj4SL1K6AYCmguq5OFLYaI2IK5E-0xhST57l6eyMG69ksPJ8tJEiG7l1V9eTvHPTtTzb7zh2wbte_gh-HljSaOT3OVrqWX4NnqKbwpikG-UvGqXhKH8S-SQvaOLoyMtvrusW8VI8s8ucXz28x-Ly08fLk7Ns--X0_GSzzfoCFWSa2OaaytJqg2RIc533UCOQLYtcaYvAhoypiwpJdcDISiNjDn2HTaeOxbtD7C6G25nT1A4u9ew9jRzm1OaqKPKqLBQs9O0_9CbMcVyOW1TV6KJGjYtaH1QfQ0qRbbuLbqC4bxHa-zba-zbaxzaWhTcPsXM3sHnkf75_Ac0B3DnP-__EtZsPF5u_4b8Bro-WUA</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Dolado, Irene</creator><creator>Alfaro‐Mozaz, Francisco Javier</creator><creator>Li, Peining</creator><creator>Nikulina, Elizaveta</creator><creator>Bylinkin, Andrei</creator><creator>Liu, Song</creator><creator>Edgar, James H.</creator><creator>Casanova, Felix</creator><creator>Hueso, Luis E.</creator><creator>Alonso‐González, Pablo</creator><creator>Vélez, Saül</creator><creator>Nikitin, Alexey Y.</creator><creator>Hillenbrand, Rainer</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20200301</creationdate><title>Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons</title><author>Dolado, Irene ; Alfaro‐Mozaz, Francisco Javier ; Li, Peining ; Nikulina, Elizaveta ; Bylinkin, Andrei ; Liu, Song ; Edgar, James H. ; Casanova, Felix ; Hueso, Luis E. ; Alonso‐González, Pablo ; Vélez, Saül ; Nikitin, Alexey Y. ; Hillenbrand, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4130-7aef27a55f7d1ada7e82c0810af54237f10edadd8461a3b0e1e371e120cb19b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boron nitride</topic><topic>Flakes</topic><topic>hexagonal boron nitride</topic><topic>hyperbolic phonon polaritons</topic><topic>Infrared radiation</topic><topic>linear waveguides</topic><topic>Materials science</topic><topic>mid‐infrared</topic><topic>Photonics</topic><topic>Polaritons</topic><topic>s‐SNOM</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolado, Irene</creatorcontrib><creatorcontrib>Alfaro‐Mozaz, Francisco Javier</creatorcontrib><creatorcontrib>Li, Peining</creatorcontrib><creatorcontrib>Nikulina, Elizaveta</creatorcontrib><creatorcontrib>Bylinkin, Andrei</creatorcontrib><creatorcontrib>Liu, Song</creatorcontrib><creatorcontrib>Edgar, James H.</creatorcontrib><creatorcontrib>Casanova, Felix</creatorcontrib><creatorcontrib>Hueso, Luis E.</creatorcontrib><creatorcontrib>Alonso‐González, Pablo</creatorcontrib><creatorcontrib>Vélez, Saül</creatorcontrib><creatorcontrib>Nikitin, Alexey Y.</creatorcontrib><creatorcontrib>Hillenbrand, Rainer</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolado, Irene</au><au>Alfaro‐Mozaz, Francisco Javier</au><au>Li, Peining</au><au>Nikulina, Elizaveta</au><au>Bylinkin, Andrei</au><au>Liu, Song</au><au>Edgar, James H.</au><au>Casanova, Felix</au><au>Hueso, Luis E.</au><au>Alonso‐González, Pablo</au><au>Vélez, Saül</au><au>Nikitin, Alexey Y.</au><au>Hillenbrand, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><spage>e1906530</spage><epage>n/a</epage><pages>e1906530-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Van der Waals (vdW) materials host a variety of polaritons, which make them an emerging material platform for manipulating light at the nanoscale. Due to the layered structure of vdW materials, the polaritons can exhibit a hyperbolic dispersion and propagate as nanoscale‐confined volume modes in thin flakes. On the other hand, surface‐confined modes can be found at the flake edges. Surprisingly, the guiding of these modes in ribbons—representing typical linear waveguide structures—is widely unexplored. Here, a detailed study of hyperbolic phonon polaritons propagating in hexagonal boron nitride ribbons is reported. Employing infrared nanoimaging, a variety of modes are observed. Particularly, the fundamental volume waveguide mode that exhibits a cutoff width is identified, which, interestingly, can be lowered by reducing the waveguide thickness. Further, hybridization of the surface modes and their evolution with varying frequency and waveguide width are observed. Most importantly, it is demonstrated that the symmetrically hybridized surface mode does not exhibit a cutoff width, and thus enables linear waveguiding of the polaritons in arbitrarily narrow ribbons. The experimental data, supported by simulations, establish a solid basis for the understanding of hyperbolic polaritons in linear waveguides, which is of critical importance for their application in future photonic devices. Infrared nanoimaging and theoretical simulations are applied to study phonon polariton waveguide modes in nanoscale hexagonal boron nitride ribbons. Fundamental volume and hybridized surface modes are identified. Most importantly, the symmetrically hybridized surface mode does not exhibit a cutoff width, and thus allows for linear waveguiding of infrared energy in the narrowest ribbons that can be fabricated.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31977111</pmid><doi>10.1002/adma.201906530</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-03, Vol.32 (9), p.e1906530-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2344265430
source Wiley
subjects Boron nitride
Flakes
hexagonal boron nitride
hyperbolic phonon polaritons
Infrared radiation
linear waveguides
Materials science
mid‐infrared
Photonics
Polaritons
s‐SNOM
Waveguides
title Nanoscale Guiding of Infrared Light with Hyperbolic Volume and Surface Polaritons in van der Waals Material Ribbons
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Guiding%20of%20Infrared%20Light%20with%20Hyperbolic%20Volume%20and%20Surface%20Polaritons%20in%20van%20der%20Waals%20Material%20Ribbons&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Dolado,%20Irene&rft.date=2020-03-01&rft.volume=32&rft.issue=9&rft.spage=e1906530&rft.epage=n/a&rft.pages=e1906530-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201906530&rft_dat=%3Cproquest_cross%3E2369748171%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4130-7aef27a55f7d1ada7e82c0810af54237f10edadd8461a3b0e1e371e120cb19b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2369748171&rft_id=info:pmid/31977111&rfr_iscdi=true