Loading…

Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms

Metallic multilayered nanofilms have been extensively studied owing to their unique physical properties and applications. However, studies on the thermal conductivity and electrical resistivity of metallic multilayered nanofilms, as their important physical properties, are seldom reported. In this w...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2020-02, Vol.12 (7), p.8886-8896
Main Authors: Dong, Lan, Wei, Guo, Cheng, Tao, Tang, Jun, Ye, Xiaobin, Hong, Mengqing, Hu, Lulu, Yin, Ran, Zhao, Shuqin, Cai, Guangxu, Shi, Yin, Pan, Bicai, Jiang, Changzhong, Ren, Feng
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263
cites cdi_FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263
container_end_page 8896
container_issue 7
container_start_page 8886
container_title ACS applied materials & interfaces
container_volume 12
creator Dong, Lan
Wei, Guo
Cheng, Tao
Tang, Jun
Ye, Xiaobin
Hong, Mengqing
Hu, Lulu
Yin, Ran
Zhao, Shuqin
Cai, Guangxu
Shi, Yin
Pan, Bicai
Jiang, Changzhong
Ren, Feng
description Metallic multilayered nanofilms have been extensively studied owing to their unique physical properties and applications. However, studies on the thermal conductivity and electrical resistivity of metallic multilayered nanofilms, as their important physical properties, are seldom reported. In this work, Cu/W multilayered nanofilms with periodic thickness varying from 6 to 150 nm were deposited by magnetron sputtering. The resistivities of the Cu/W multilayered nanofilms increase with the decrease of periodic thickness, especially when the periodic thickness is smaller than 37 nm. The resistivities of the multilayered nanofilms fit well with the Fuchs–Sondheimer and Mayadas–Shatzkes (FS–MS) model, which considers both interface scattering and grain boundary scattering. The thermal conductivities of the Cu/W multilayered nanofilms were measured by the three-omega (3ω) method, which decrease with a decrease of periodic thickness initially and increase at the smallest periodic thickness of 6 nm. The Boltzmann transport equation (BTE)-based model was used, to explain the periodic thickness-dependent thermal conductivity of metallic multilayered nanofilms by considering the contributions from both phonon and electron heat transport processes, where the calculated thermal conductivities agree well with the measured ones. The electrical resistivity and thermal conductivity strongly depend on the microstructures of the multilayered nanofilms.
doi_str_mv 10.1021/acsami.9b21182
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2344270072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344270072</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMobk5ffZQ-itgtX03bRynzAzYFmfgY0jTFjLSdSTPYf29Gt735dC_3_s6BcwC4RXCKIEYzIZ1o9DQvMUIZPgNjlFMaZzjB56ed0hG4cm4NISMYJpdgRFCeojRNx4CvfpRthImKrq287PVW97vHaG6U7K2W4fGpnHbHu2iraKml7VxvA-2tiro6KvzsO1p602sjdsqqKnoXbVdr07hrcFEL49TNYU7A1_N8VbzGi4-Xt-JpEQuSsz6mImMyEUhWLFcYppgqUpZJAhkVlGQEZ0RlLBclqaoykTJJWU1ITmtEpSSYkQm4H3w3tvv1yvW80U4qY0SrOu84JpTiFAbngE4HdB_DWVXzjdWNsDuOIN-XyodS-aHUILg7ePuyUdUJP7YYgIcBCEK-7rxtQ9T_3P4AeEmCJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344270072</pqid></control><display><type>article</type><title>Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Dong, Lan ; Wei, Guo ; Cheng, Tao ; Tang, Jun ; Ye, Xiaobin ; Hong, Mengqing ; Hu, Lulu ; Yin, Ran ; Zhao, Shuqin ; Cai, Guangxu ; Shi, Yin ; Pan, Bicai ; Jiang, Changzhong ; Ren, Feng</creator><creatorcontrib>Dong, Lan ; Wei, Guo ; Cheng, Tao ; Tang, Jun ; Ye, Xiaobin ; Hong, Mengqing ; Hu, Lulu ; Yin, Ran ; Zhao, Shuqin ; Cai, Guangxu ; Shi, Yin ; Pan, Bicai ; Jiang, Changzhong ; Ren, Feng</creatorcontrib><description>Metallic multilayered nanofilms have been extensively studied owing to their unique physical properties and applications. However, studies on the thermal conductivity and electrical resistivity of metallic multilayered nanofilms, as their important physical properties, are seldom reported. In this work, Cu/W multilayered nanofilms with periodic thickness varying from 6 to 150 nm were deposited by magnetron sputtering. The resistivities of the Cu/W multilayered nanofilms increase with the decrease of periodic thickness, especially when the periodic thickness is smaller than 37 nm. The resistivities of the multilayered nanofilms fit well with the Fuchs–Sondheimer and Mayadas–Shatzkes (FS–MS) model, which considers both interface scattering and grain boundary scattering. The thermal conductivities of the Cu/W multilayered nanofilms were measured by the three-omega (3ω) method, which decrease with a decrease of periodic thickness initially and increase at the smallest periodic thickness of 6 nm. The Boltzmann transport equation (BTE)-based model was used, to explain the periodic thickness-dependent thermal conductivity of metallic multilayered nanofilms by considering the contributions from both phonon and electron heat transport processes, where the calculated thermal conductivities agree well with the measured ones. The electrical resistivity and thermal conductivity strongly depend on the microstructures of the multilayered nanofilms.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b21182</identifier><identifier>PMID: 31971777</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-02, Vol.12 (7), p.8886-8896</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263</citedby><cites>FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263</cites><orcidid>0000-0002-9557-5995 ; 0000-0002-5128-7860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31971777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Lan</creatorcontrib><creatorcontrib>Wei, Guo</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Tang, Jun</creatorcontrib><creatorcontrib>Ye, Xiaobin</creatorcontrib><creatorcontrib>Hong, Mengqing</creatorcontrib><creatorcontrib>Hu, Lulu</creatorcontrib><creatorcontrib>Yin, Ran</creatorcontrib><creatorcontrib>Zhao, Shuqin</creatorcontrib><creatorcontrib>Cai, Guangxu</creatorcontrib><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>Pan, Bicai</creatorcontrib><creatorcontrib>Jiang, Changzhong</creatorcontrib><creatorcontrib>Ren, Feng</creatorcontrib><title>Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Metallic multilayered nanofilms have been extensively studied owing to their unique physical properties and applications. However, studies on the thermal conductivity and electrical resistivity of metallic multilayered nanofilms, as their important physical properties, are seldom reported. In this work, Cu/W multilayered nanofilms with periodic thickness varying from 6 to 150 nm were deposited by magnetron sputtering. The resistivities of the Cu/W multilayered nanofilms increase with the decrease of periodic thickness, especially when the periodic thickness is smaller than 37 nm. The resistivities of the multilayered nanofilms fit well with the Fuchs–Sondheimer and Mayadas–Shatzkes (FS–MS) model, which considers both interface scattering and grain boundary scattering. The thermal conductivities of the Cu/W multilayered nanofilms were measured by the three-omega (3ω) method, which decrease with a decrease of periodic thickness initially and increase at the smallest periodic thickness of 6 nm. The Boltzmann transport equation (BTE)-based model was used, to explain the periodic thickness-dependent thermal conductivity of metallic multilayered nanofilms by considering the contributions from both phonon and electron heat transport processes, where the calculated thermal conductivities agree well with the measured ones. The electrical resistivity and thermal conductivity strongly depend on the microstructures of the multilayered nanofilms.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kN1LwzAUxYMobk5ffZQ-itgtX03bRynzAzYFmfgY0jTFjLSdSTPYf29Gt735dC_3_s6BcwC4RXCKIEYzIZ1o9DQvMUIZPgNjlFMaZzjB56ed0hG4cm4NISMYJpdgRFCeojRNx4CvfpRthImKrq287PVW97vHaG6U7K2W4fGpnHbHu2iraKml7VxvA-2tiro6KvzsO1p602sjdsqqKnoXbVdr07hrcFEL49TNYU7A1_N8VbzGi4-Xt-JpEQuSsz6mImMyEUhWLFcYppgqUpZJAhkVlGQEZ0RlLBclqaoykTJJWU1ITmtEpSSYkQm4H3w3tvv1yvW80U4qY0SrOu84JpTiFAbngE4HdB_DWVXzjdWNsDuOIN-XyodS-aHUILg7ePuyUdUJP7YYgIcBCEK-7rxtQ9T_3P4AeEmCJQ</recordid><startdate>20200219</startdate><enddate>20200219</enddate><creator>Dong, Lan</creator><creator>Wei, Guo</creator><creator>Cheng, Tao</creator><creator>Tang, Jun</creator><creator>Ye, Xiaobin</creator><creator>Hong, Mengqing</creator><creator>Hu, Lulu</creator><creator>Yin, Ran</creator><creator>Zhao, Shuqin</creator><creator>Cai, Guangxu</creator><creator>Shi, Yin</creator><creator>Pan, Bicai</creator><creator>Jiang, Changzhong</creator><creator>Ren, Feng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9557-5995</orcidid><orcidid>https://orcid.org/0000-0002-5128-7860</orcidid></search><sort><creationdate>20200219</creationdate><title>Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms</title><author>Dong, Lan ; Wei, Guo ; Cheng, Tao ; Tang, Jun ; Ye, Xiaobin ; Hong, Mengqing ; Hu, Lulu ; Yin, Ran ; Zhao, Shuqin ; Cai, Guangxu ; Shi, Yin ; Pan, Bicai ; Jiang, Changzhong ; Ren, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Lan</creatorcontrib><creatorcontrib>Wei, Guo</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Tang, Jun</creatorcontrib><creatorcontrib>Ye, Xiaobin</creatorcontrib><creatorcontrib>Hong, Mengqing</creatorcontrib><creatorcontrib>Hu, Lulu</creatorcontrib><creatorcontrib>Yin, Ran</creatorcontrib><creatorcontrib>Zhao, Shuqin</creatorcontrib><creatorcontrib>Cai, Guangxu</creatorcontrib><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>Pan, Bicai</creatorcontrib><creatorcontrib>Jiang, Changzhong</creatorcontrib><creatorcontrib>Ren, Feng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Lan</au><au>Wei, Guo</au><au>Cheng, Tao</au><au>Tang, Jun</au><au>Ye, Xiaobin</au><au>Hong, Mengqing</au><au>Hu, Lulu</au><au>Yin, Ran</au><au>Zhao, Shuqin</au><au>Cai, Guangxu</au><au>Shi, Yin</au><au>Pan, Bicai</au><au>Jiang, Changzhong</au><au>Ren, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-02-19</date><risdate>2020</risdate><volume>12</volume><issue>7</issue><spage>8886</spage><epage>8896</epage><pages>8886-8896</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Metallic multilayered nanofilms have been extensively studied owing to their unique physical properties and applications. However, studies on the thermal conductivity and electrical resistivity of metallic multilayered nanofilms, as their important physical properties, are seldom reported. In this work, Cu/W multilayered nanofilms with periodic thickness varying from 6 to 150 nm were deposited by magnetron sputtering. The resistivities of the Cu/W multilayered nanofilms increase with the decrease of periodic thickness, especially when the periodic thickness is smaller than 37 nm. The resistivities of the multilayered nanofilms fit well with the Fuchs–Sondheimer and Mayadas–Shatzkes (FS–MS) model, which considers both interface scattering and grain boundary scattering. The thermal conductivities of the Cu/W multilayered nanofilms were measured by the three-omega (3ω) method, which decrease with a decrease of periodic thickness initially and increase at the smallest periodic thickness of 6 nm. The Boltzmann transport equation (BTE)-based model was used, to explain the periodic thickness-dependent thermal conductivity of metallic multilayered nanofilms by considering the contributions from both phonon and electron heat transport processes, where the calculated thermal conductivities agree well with the measured ones. The electrical resistivity and thermal conductivity strongly depend on the microstructures of the multilayered nanofilms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31971777</pmid><doi>10.1021/acsami.9b21182</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9557-5995</orcidid><orcidid>https://orcid.org/0000-0002-5128-7860</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-02, Vol.12 (7), p.8886-8896
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2344270072
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conductivity,%20Electrical%20Resistivity,%20and%20Microstructure%20of%20Cu/W%20Multilayered%20Nanofilms&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Dong,%20Lan&rft.date=2020-02-19&rft.volume=12&rft.issue=7&rft.spage=8886&rft.epage=8896&rft.pages=8886-8896&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b21182&rft_dat=%3Cproquest_cross%3E2344270072%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2344270072&rft_id=info:pmid/31971777&rfr_iscdi=true