Loading…
Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms
Metallic multilayered nanofilms have been extensively studied owing to their unique physical properties and applications. However, studies on the thermal conductivity and electrical resistivity of metallic multilayered nanofilms, as their important physical properties, are seldom reported. In this w...
Saved in:
Published in: | ACS applied materials & interfaces 2020-02, Vol.12 (7), p.8886-8896 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263 |
---|---|
cites | cdi_FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263 |
container_end_page | 8896 |
container_issue | 7 |
container_start_page | 8886 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Dong, Lan Wei, Guo Cheng, Tao Tang, Jun Ye, Xiaobin Hong, Mengqing Hu, Lulu Yin, Ran Zhao, Shuqin Cai, Guangxu Shi, Yin Pan, Bicai Jiang, Changzhong Ren, Feng |
description | Metallic multilayered nanofilms have been extensively studied owing to their unique physical properties and applications. However, studies on the thermal conductivity and electrical resistivity of metallic multilayered nanofilms, as their important physical properties, are seldom reported. In this work, Cu/W multilayered nanofilms with periodic thickness varying from 6 to 150 nm were deposited by magnetron sputtering. The resistivities of the Cu/W multilayered nanofilms increase with the decrease of periodic thickness, especially when the periodic thickness is smaller than 37 nm. The resistivities of the multilayered nanofilms fit well with the Fuchs–Sondheimer and Mayadas–Shatzkes (FS–MS) model, which considers both interface scattering and grain boundary scattering. The thermal conductivities of the Cu/W multilayered nanofilms were measured by the three-omega (3ω) method, which decrease with a decrease of periodic thickness initially and increase at the smallest periodic thickness of 6 nm. The Boltzmann transport equation (BTE)-based model was used, to explain the periodic thickness-dependent thermal conductivity of metallic multilayered nanofilms by considering the contributions from both phonon and electron heat transport processes, where the calculated thermal conductivities agree well with the measured ones. The electrical resistivity and thermal conductivity strongly depend on the microstructures of the multilayered nanofilms. |
doi_str_mv | 10.1021/acsami.9b21182 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2344270072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2344270072</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMobk5ffZQ-itgtX03bRynzAzYFmfgY0jTFjLSdSTPYf29Gt735dC_3_s6BcwC4RXCKIEYzIZ1o9DQvMUIZPgNjlFMaZzjB56ed0hG4cm4NISMYJpdgRFCeojRNx4CvfpRthImKrq287PVW97vHaG6U7K2W4fGpnHbHu2iraKml7VxvA-2tiro6KvzsO1p602sjdsqqKnoXbVdr07hrcFEL49TNYU7A1_N8VbzGi4-Xt-JpEQuSsz6mImMyEUhWLFcYppgqUpZJAhkVlGQEZ0RlLBclqaoykTJJWU1ITmtEpSSYkQm4H3w3tvv1yvW80U4qY0SrOu84JpTiFAbngE4HdB_DWVXzjdWNsDuOIN-XyodS-aHUILg7ePuyUdUJP7YYgIcBCEK-7rxtQ9T_3P4AeEmCJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2344270072</pqid></control><display><type>article</type><title>Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Dong, Lan ; Wei, Guo ; Cheng, Tao ; Tang, Jun ; Ye, Xiaobin ; Hong, Mengqing ; Hu, Lulu ; Yin, Ran ; Zhao, Shuqin ; Cai, Guangxu ; Shi, Yin ; Pan, Bicai ; Jiang, Changzhong ; Ren, Feng</creator><creatorcontrib>Dong, Lan ; Wei, Guo ; Cheng, Tao ; Tang, Jun ; Ye, Xiaobin ; Hong, Mengqing ; Hu, Lulu ; Yin, Ran ; Zhao, Shuqin ; Cai, Guangxu ; Shi, Yin ; Pan, Bicai ; Jiang, Changzhong ; Ren, Feng</creatorcontrib><description>Metallic multilayered nanofilms have been extensively studied owing to their unique physical properties and applications. However, studies on the thermal conductivity and electrical resistivity of metallic multilayered nanofilms, as their important physical properties, are seldom reported. In this work, Cu/W multilayered nanofilms with periodic thickness varying from 6 to 150 nm were deposited by magnetron sputtering. The resistivities of the Cu/W multilayered nanofilms increase with the decrease of periodic thickness, especially when the periodic thickness is smaller than 37 nm. The resistivities of the multilayered nanofilms fit well with the Fuchs–Sondheimer and Mayadas–Shatzkes (FS–MS) model, which considers both interface scattering and grain boundary scattering. The thermal conductivities of the Cu/W multilayered nanofilms were measured by the three-omega (3ω) method, which decrease with a decrease of periodic thickness initially and increase at the smallest periodic thickness of 6 nm. The Boltzmann transport equation (BTE)-based model was used, to explain the periodic thickness-dependent thermal conductivity of metallic multilayered nanofilms by considering the contributions from both phonon and electron heat transport processes, where the calculated thermal conductivities agree well with the measured ones. The electrical resistivity and thermal conductivity strongly depend on the microstructures of the multilayered nanofilms.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b21182</identifier><identifier>PMID: 31971777</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2020-02, Vol.12 (7), p.8886-8896</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263</citedby><cites>FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263</cites><orcidid>0000-0002-9557-5995 ; 0000-0002-5128-7860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31971777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Lan</creatorcontrib><creatorcontrib>Wei, Guo</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Tang, Jun</creatorcontrib><creatorcontrib>Ye, Xiaobin</creatorcontrib><creatorcontrib>Hong, Mengqing</creatorcontrib><creatorcontrib>Hu, Lulu</creatorcontrib><creatorcontrib>Yin, Ran</creatorcontrib><creatorcontrib>Zhao, Shuqin</creatorcontrib><creatorcontrib>Cai, Guangxu</creatorcontrib><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>Pan, Bicai</creatorcontrib><creatorcontrib>Jiang, Changzhong</creatorcontrib><creatorcontrib>Ren, Feng</creatorcontrib><title>Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Metallic multilayered nanofilms have been extensively studied owing to their unique physical properties and applications. However, studies on the thermal conductivity and electrical resistivity of metallic multilayered nanofilms, as their important physical properties, are seldom reported. In this work, Cu/W multilayered nanofilms with periodic thickness varying from 6 to 150 nm were deposited by magnetron sputtering. The resistivities of the Cu/W multilayered nanofilms increase with the decrease of periodic thickness, especially when the periodic thickness is smaller than 37 nm. The resistivities of the multilayered nanofilms fit well with the Fuchs–Sondheimer and Mayadas–Shatzkes (FS–MS) model, which considers both interface scattering and grain boundary scattering. The thermal conductivities of the Cu/W multilayered nanofilms were measured by the three-omega (3ω) method, which decrease with a decrease of periodic thickness initially and increase at the smallest periodic thickness of 6 nm. The Boltzmann transport equation (BTE)-based model was used, to explain the periodic thickness-dependent thermal conductivity of metallic multilayered nanofilms by considering the contributions from both phonon and electron heat transport processes, where the calculated thermal conductivities agree well with the measured ones. The electrical resistivity and thermal conductivity strongly depend on the microstructures of the multilayered nanofilms.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kN1LwzAUxYMobk5ffZQ-itgtX03bRynzAzYFmfgY0jTFjLSdSTPYf29Gt735dC_3_s6BcwC4RXCKIEYzIZ1o9DQvMUIZPgNjlFMaZzjB56ed0hG4cm4NISMYJpdgRFCeojRNx4CvfpRthImKrq287PVW97vHaG6U7K2W4fGpnHbHu2iraKml7VxvA-2tiro6KvzsO1p602sjdsqqKnoXbVdr07hrcFEL49TNYU7A1_N8VbzGi4-Xt-JpEQuSsz6mImMyEUhWLFcYppgqUpZJAhkVlGQEZ0RlLBclqaoykTJJWU1ITmtEpSSYkQm4H3w3tvv1yvW80U4qY0SrOu84JpTiFAbngE4HdB_DWVXzjdWNsDuOIN-XyodS-aHUILg7ePuyUdUJP7YYgIcBCEK-7rxtQ9T_3P4AeEmCJQ</recordid><startdate>20200219</startdate><enddate>20200219</enddate><creator>Dong, Lan</creator><creator>Wei, Guo</creator><creator>Cheng, Tao</creator><creator>Tang, Jun</creator><creator>Ye, Xiaobin</creator><creator>Hong, Mengqing</creator><creator>Hu, Lulu</creator><creator>Yin, Ran</creator><creator>Zhao, Shuqin</creator><creator>Cai, Guangxu</creator><creator>Shi, Yin</creator><creator>Pan, Bicai</creator><creator>Jiang, Changzhong</creator><creator>Ren, Feng</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9557-5995</orcidid><orcidid>https://orcid.org/0000-0002-5128-7860</orcidid></search><sort><creationdate>20200219</creationdate><title>Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms</title><author>Dong, Lan ; Wei, Guo ; Cheng, Tao ; Tang, Jun ; Ye, Xiaobin ; Hong, Mengqing ; Hu, Lulu ; Yin, Ran ; Zhao, Shuqin ; Cai, Guangxu ; Shi, Yin ; Pan, Bicai ; Jiang, Changzhong ; Ren, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Lan</creatorcontrib><creatorcontrib>Wei, Guo</creatorcontrib><creatorcontrib>Cheng, Tao</creatorcontrib><creatorcontrib>Tang, Jun</creatorcontrib><creatorcontrib>Ye, Xiaobin</creatorcontrib><creatorcontrib>Hong, Mengqing</creatorcontrib><creatorcontrib>Hu, Lulu</creatorcontrib><creatorcontrib>Yin, Ran</creatorcontrib><creatorcontrib>Zhao, Shuqin</creatorcontrib><creatorcontrib>Cai, Guangxu</creatorcontrib><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>Pan, Bicai</creatorcontrib><creatorcontrib>Jiang, Changzhong</creatorcontrib><creatorcontrib>Ren, Feng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Lan</au><au>Wei, Guo</au><au>Cheng, Tao</au><au>Tang, Jun</au><au>Ye, Xiaobin</au><au>Hong, Mengqing</au><au>Hu, Lulu</au><au>Yin, Ran</au><au>Zhao, Shuqin</au><au>Cai, Guangxu</au><au>Shi, Yin</au><au>Pan, Bicai</au><au>Jiang, Changzhong</au><au>Ren, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-02-19</date><risdate>2020</risdate><volume>12</volume><issue>7</issue><spage>8886</spage><epage>8896</epage><pages>8886-8896</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Metallic multilayered nanofilms have been extensively studied owing to their unique physical properties and applications. However, studies on the thermal conductivity and electrical resistivity of metallic multilayered nanofilms, as their important physical properties, are seldom reported. In this work, Cu/W multilayered nanofilms with periodic thickness varying from 6 to 150 nm were deposited by magnetron sputtering. The resistivities of the Cu/W multilayered nanofilms increase with the decrease of periodic thickness, especially when the periodic thickness is smaller than 37 nm. The resistivities of the multilayered nanofilms fit well with the Fuchs–Sondheimer and Mayadas–Shatzkes (FS–MS) model, which considers both interface scattering and grain boundary scattering. The thermal conductivities of the Cu/W multilayered nanofilms were measured by the three-omega (3ω) method, which decrease with a decrease of periodic thickness initially and increase at the smallest periodic thickness of 6 nm. The Boltzmann transport equation (BTE)-based model was used, to explain the periodic thickness-dependent thermal conductivity of metallic multilayered nanofilms by considering the contributions from both phonon and electron heat transport processes, where the calculated thermal conductivities agree well with the measured ones. The electrical resistivity and thermal conductivity strongly depend on the microstructures of the multilayered nanofilms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31971777</pmid><doi>10.1021/acsami.9b21182</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9557-5995</orcidid><orcidid>https://orcid.org/0000-0002-5128-7860</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-02, Vol.12 (7), p.8886-8896 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2344270072 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A18%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Conductivity,%20Electrical%20Resistivity,%20and%20Microstructure%20of%20Cu/W%20Multilayered%20Nanofilms&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Dong,%20Lan&rft.date=2020-02-19&rft.volume=12&rft.issue=7&rft.spage=8886&rft.epage=8896&rft.pages=8886-8896&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b21182&rft_dat=%3Cproquest_cross%3E2344270072%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a396t-4a86c5a1cd69e20724e3bb55064a4383283e869ab3ddb5cc576f3394f14cc3263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2344270072&rft_id=info:pmid/31971777&rfr_iscdi=true |