Loading…

N-Linked Surface Glycan Biosynthesis, Composition, Inhibition, and Function in Cnidarian-Dinoflagellate Symbiosis

The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact...

Full description

Saved in:
Bibliographic Details
Published in:Microbial ecology 2020-07, Vol.80 (1), p.223-236
Main Authors: Tivey, Trevor R., Parkinson, John Everett, Mandelare, Paige E., Adpressa, Donovon A., Peng, Wenjing, Dong, Xue, Mechref, Yehia, Weis, Virginia M., Loesgen, Sandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-abdb19f424c6534650c28181277648ed614b2319ea2ec93f53a450cc3aef8e973
cites cdi_FETCH-LOGICAL-c441t-abdb19f424c6534650c28181277648ed614b2319ea2ec93f53a450cc3aef8e973
container_end_page 236
container_issue 1
container_start_page 223
container_title Microbial ecology
container_volume 80
creator Tivey, Trevor R.
Parkinson, John Everett
Mandelare, Paige E.
Adpressa, Donovon A.
Peng, Wenjing
Dong, Xue
Mechref, Yehia
Weis, Virginia M.
Loesgen, Sandra
description The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact the onset of marine endosymbioses, but our understanding of the effects of cell surface glycome composition on symbiosis establishment remains limited. In this study, we examined the canonical N-glycan biosynthesis pathway in the genome of the dinoflagellate symbiont Breviolum minutum (family Symbiodiniaceae) and found it to be conserved with the exception of the transferase GlcNAc-TII (MGAT2). Using coupled liquid chromatography-mass spectrometry (LC-MS/MS), we characterized the cell surface N-glycan content of B. minutum, providing the first insight into the molecular composition of surface glycans in dinoflagellates. We then used the biosynthesis inhibitors kifunensine and swainsonine to alter the glycan composition of B. minutum. Successful high-mannose enrichment via kifunensine treatment resulted in a significant decrease in colonization of the model sea anemone Aiptasia (Exaiptasia pallida) by B. minutum. Hybrid glycan enrichment via swainsonine treatment, however, could not be confirmed and did not impact colonization. We conclude that functional Golgi processing of N-glycans is critical for maintaining appropriate cell surface glycan composition and for ensuring colonization success by B. minutum.
doi_str_mv 10.1007/s00248-020-01487-9
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2346296391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48740011</jstor_id><sourcerecordid>48740011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-abdb19f424c6534650c28181277648ed614b2319ea2ec93f53a450cc3aef8e973</originalsourceid><addsrcrecordid>eNp9kUFvFCEUx4nR2G31C5hoSLx4KAoPZgaOdW1rk40eqok3wjBMyzoDW5g57LeXddaaePAE5P3e_z3yQ-gVo-8Zpc2HTCkISShQQpmQDVFP0IoJDoRJ8eMpWlGqKsJrkCfoNOctpaypgT9HJ5wpCQrUCj18IRsffroO386pN9bh62FvTcAffcz7MN277PM5XsdxF7OffAzn-Cbc-_Z4N6HDV3Owhxf2Aa-D70zyJpBPPsR-MHduGMzk8O1-bEukzy_Qs94M2b08nmfo-9Xlt_Vnsvl6fbO-2BArBJuIabuWqV6AsHXFRV1RC5JJBk1TC-m6mokWyj-cAWcV7ytuRGEsN66XTjX8DL1bcncpPswuT3r02R62CS7OWUMJBVVzxQr69h90G-cUynYaBFDOq4YdKFgom2LOyfV6l_xo0l4zqg9C9CJEFyH6txCtStObY_Tcjq57bPljoAB8AXIphTuX_s7-b-zrpWubp5geU0tRFMuM_wKbSJ9b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420335711</pqid></control><display><type>article</type><title>N-Linked Surface Glycan Biosynthesis, Composition, Inhibition, and Function in Cnidarian-Dinoflagellate Symbiosis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Springer Link</source><creator>Tivey, Trevor R. ; Parkinson, John Everett ; Mandelare, Paige E. ; Adpressa, Donovon A. ; Peng, Wenjing ; Dong, Xue ; Mechref, Yehia ; Weis, Virginia M. ; Loesgen, Sandra</creator><creatorcontrib>Tivey, Trevor R. ; Parkinson, John Everett ; Mandelare, Paige E. ; Adpressa, Donovon A. ; Peng, Wenjing ; Dong, Xue ; Mechref, Yehia ; Weis, Virginia M. ; Loesgen, Sandra</creatorcontrib><description>The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact the onset of marine endosymbioses, but our understanding of the effects of cell surface glycome composition on symbiosis establishment remains limited. In this study, we examined the canonical N-glycan biosynthesis pathway in the genome of the dinoflagellate symbiont Breviolum minutum (family Symbiodiniaceae) and found it to be conserved with the exception of the transferase GlcNAc-TII (MGAT2). Using coupled liquid chromatography-mass spectrometry (LC-MS/MS), we characterized the cell surface N-glycan content of B. minutum, providing the first insight into the molecular composition of surface glycans in dinoflagellates. We then used the biosynthesis inhibitors kifunensine and swainsonine to alter the glycan composition of B. minutum. Successful high-mannose enrichment via kifunensine treatment resulted in a significant decrease in colonization of the model sea anemone Aiptasia (Exaiptasia pallida) by B. minutum. Hybrid glycan enrichment via swainsonine treatment, however, could not be confirmed and did not impact colonization. We conclude that functional Golgi processing of N-glycans is critical for maintaining appropriate cell surface glycan composition and for ensuring colonization success by B. minutum.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-020-01487-9</identifier><identifier>PMID: 31982929</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Algae ; Biomedical and Life Sciences ; Biosynthesis ; Cell surface ; Chemical composition ; Colonization ; Corals ; Dinoflagellates ; Ecology ; Genomes ; Geoecology/Natural Processes ; Glycan ; Golgi apparatus ; HOST MICROBE INTERACTIONS ; Immunity ; Innate immunity ; Life Sciences ; Liquid chromatography ; Mannose ; Marine invertebrates ; Mass spectrometry ; Mass spectroscopy ; Microbial Ecology ; Microbiology ; Microorganisms ; Molecular interactions ; N-glycans ; Nature Conservation ; Polysaccharides ; Symbionts ; Symbiosis ; Water Quality/Water Pollution</subject><ispartof>Microbial ecology, 2020-07, Vol.80 (1), p.223-236</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-abdb19f424c6534650c28181277648ed614b2319ea2ec93f53a450cc3aef8e973</citedby><cites>FETCH-LOGICAL-c441t-abdb19f424c6534650c28181277648ed614b2319ea2ec93f53a450cc3aef8e973</cites><orcidid>0000-0003-1090-564X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48740011$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48740011$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31982929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tivey, Trevor R.</creatorcontrib><creatorcontrib>Parkinson, John Everett</creatorcontrib><creatorcontrib>Mandelare, Paige E.</creatorcontrib><creatorcontrib>Adpressa, Donovon A.</creatorcontrib><creatorcontrib>Peng, Wenjing</creatorcontrib><creatorcontrib>Dong, Xue</creatorcontrib><creatorcontrib>Mechref, Yehia</creatorcontrib><creatorcontrib>Weis, Virginia M.</creatorcontrib><creatorcontrib>Loesgen, Sandra</creatorcontrib><title>N-Linked Surface Glycan Biosynthesis, Composition, Inhibition, and Function in Cnidarian-Dinoflagellate Symbiosis</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><addtitle>Microb Ecol</addtitle><description>The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact the onset of marine endosymbioses, but our understanding of the effects of cell surface glycome composition on symbiosis establishment remains limited. In this study, we examined the canonical N-glycan biosynthesis pathway in the genome of the dinoflagellate symbiont Breviolum minutum (family Symbiodiniaceae) and found it to be conserved with the exception of the transferase GlcNAc-TII (MGAT2). Using coupled liquid chromatography-mass spectrometry (LC-MS/MS), we characterized the cell surface N-glycan content of B. minutum, providing the first insight into the molecular composition of surface glycans in dinoflagellates. We then used the biosynthesis inhibitors kifunensine and swainsonine to alter the glycan composition of B. minutum. Successful high-mannose enrichment via kifunensine treatment resulted in a significant decrease in colonization of the model sea anemone Aiptasia (Exaiptasia pallida) by B. minutum. Hybrid glycan enrichment via swainsonine treatment, however, could not be confirmed and did not impact colonization. We conclude that functional Golgi processing of N-glycans is critical for maintaining appropriate cell surface glycan composition and for ensuring colonization success by B. minutum.</description><subject>Algae</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Cell surface</subject><subject>Chemical composition</subject><subject>Colonization</subject><subject>Corals</subject><subject>Dinoflagellates</subject><subject>Ecology</subject><subject>Genomes</subject><subject>Geoecology/Natural Processes</subject><subject>Glycan</subject><subject>Golgi apparatus</subject><subject>HOST MICROBE INTERACTIONS</subject><subject>Immunity</subject><subject>Innate immunity</subject><subject>Life Sciences</subject><subject>Liquid chromatography</subject><subject>Mannose</subject><subject>Marine invertebrates</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Molecular interactions</subject><subject>N-glycans</subject><subject>Nature Conservation</subject><subject>Polysaccharides</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Water Quality/Water Pollution</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvFCEUx4nR2G31C5hoSLx4KAoPZgaOdW1rk40eqok3wjBMyzoDW5g57LeXddaaePAE5P3e_z3yQ-gVo-8Zpc2HTCkISShQQpmQDVFP0IoJDoRJ8eMpWlGqKsJrkCfoNOctpaypgT9HJ5wpCQrUCj18IRsffroO386pN9bh62FvTcAffcz7MN277PM5XsdxF7OffAzn-Cbc-_Z4N6HDV3Owhxf2Aa-D70zyJpBPPsR-MHduGMzk8O1-bEukzy_Qs94M2b08nmfo-9Xlt_Vnsvl6fbO-2BArBJuIabuWqV6AsHXFRV1RC5JJBk1TC-m6mokWyj-cAWcV7ytuRGEsN66XTjX8DL1bcncpPswuT3r02R62CS7OWUMJBVVzxQr69h90G-cUynYaBFDOq4YdKFgom2LOyfV6l_xo0l4zqg9C9CJEFyH6txCtStObY_Tcjq57bPljoAB8AXIphTuX_s7-b-zrpWubp5geU0tRFMuM_wKbSJ9b</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Tivey, Trevor R.</creator><creator>Parkinson, John Everett</creator><creator>Mandelare, Paige E.</creator><creator>Adpressa, Donovon A.</creator><creator>Peng, Wenjing</creator><creator>Dong, Xue</creator><creator>Mechref, Yehia</creator><creator>Weis, Virginia M.</creator><creator>Loesgen, Sandra</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1090-564X</orcidid></search><sort><creationdate>20200701</creationdate><title>N-Linked Surface Glycan Biosynthesis, Composition, Inhibition, and Function in Cnidarian-Dinoflagellate Symbiosis</title><author>Tivey, Trevor R. ; Parkinson, John Everett ; Mandelare, Paige E. ; Adpressa, Donovon A. ; Peng, Wenjing ; Dong, Xue ; Mechref, Yehia ; Weis, Virginia M. ; Loesgen, Sandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-abdb19f424c6534650c28181277648ed614b2319ea2ec93f53a450cc3aef8e973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algae</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Cell surface</topic><topic>Chemical composition</topic><topic>Colonization</topic><topic>Corals</topic><topic>Dinoflagellates</topic><topic>Ecology</topic><topic>Genomes</topic><topic>Geoecology/Natural Processes</topic><topic>Glycan</topic><topic>Golgi apparatus</topic><topic>HOST MICROBE INTERACTIONS</topic><topic>Immunity</topic><topic>Innate immunity</topic><topic>Life Sciences</topic><topic>Liquid chromatography</topic><topic>Mannose</topic><topic>Marine invertebrates</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Molecular interactions</topic><topic>N-glycans</topic><topic>Nature Conservation</topic><topic>Polysaccharides</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tivey, Trevor R.</creatorcontrib><creatorcontrib>Parkinson, John Everett</creatorcontrib><creatorcontrib>Mandelare, Paige E.</creatorcontrib><creatorcontrib>Adpressa, Donovon A.</creatorcontrib><creatorcontrib>Peng, Wenjing</creatorcontrib><creatorcontrib>Dong, Xue</creatorcontrib><creatorcontrib>Mechref, Yehia</creatorcontrib><creatorcontrib>Weis, Virginia M.</creatorcontrib><creatorcontrib>Loesgen, Sandra</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tivey, Trevor R.</au><au>Parkinson, John Everett</au><au>Mandelare, Paige E.</au><au>Adpressa, Donovon A.</au><au>Peng, Wenjing</au><au>Dong, Xue</au><au>Mechref, Yehia</au><au>Weis, Virginia M.</au><au>Loesgen, Sandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>N-Linked Surface Glycan Biosynthesis, Composition, Inhibition, and Function in Cnidarian-Dinoflagellate Symbiosis</atitle><jtitle>Microbial ecology</jtitle><stitle>Microb Ecol</stitle><addtitle>Microb Ecol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>80</volume><issue>1</issue><spage>223</spage><epage>236</epage><pages>223-236</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><abstract>The success of symbioses between cnidarian hosts (e.g., corals and sea anemones) and micro-algal symbionts hinges on the molecular interactions that govern the establishment and maintenance of intracellular mutualisms. As a fundamental component of innate immunity, glycan-lectin interactions impact the onset of marine endosymbioses, but our understanding of the effects of cell surface glycome composition on symbiosis establishment remains limited. In this study, we examined the canonical N-glycan biosynthesis pathway in the genome of the dinoflagellate symbiont Breviolum minutum (family Symbiodiniaceae) and found it to be conserved with the exception of the transferase GlcNAc-TII (MGAT2). Using coupled liquid chromatography-mass spectrometry (LC-MS/MS), we characterized the cell surface N-glycan content of B. minutum, providing the first insight into the molecular composition of surface glycans in dinoflagellates. We then used the biosynthesis inhibitors kifunensine and swainsonine to alter the glycan composition of B. minutum. Successful high-mannose enrichment via kifunensine treatment resulted in a significant decrease in colonization of the model sea anemone Aiptasia (Exaiptasia pallida) by B. minutum. Hybrid glycan enrichment via swainsonine treatment, however, could not be confirmed and did not impact colonization. We conclude that functional Golgi processing of N-glycans is critical for maintaining appropriate cell surface glycan composition and for ensuring colonization success by B. minutum.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><pmid>31982929</pmid><doi>10.1007/s00248-020-01487-9</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1090-564X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0095-3628
ispartof Microbial ecology, 2020-07, Vol.80 (1), p.223-236
issn 0095-3628
1432-184X
language eng
recordid cdi_proquest_miscellaneous_2346296391
source JSTOR Archival Journals and Primary Sources Collection; Springer Link
subjects Algae
Biomedical and Life Sciences
Biosynthesis
Cell surface
Chemical composition
Colonization
Corals
Dinoflagellates
Ecology
Genomes
Geoecology/Natural Processes
Glycan
Golgi apparatus
HOST MICROBE INTERACTIONS
Immunity
Innate immunity
Life Sciences
Liquid chromatography
Mannose
Marine invertebrates
Mass spectrometry
Mass spectroscopy
Microbial Ecology
Microbiology
Microorganisms
Molecular interactions
N-glycans
Nature Conservation
Polysaccharides
Symbionts
Symbiosis
Water Quality/Water Pollution
title N-Linked Surface Glycan Biosynthesis, Composition, Inhibition, and Function in Cnidarian-Dinoflagellate Symbiosis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A32%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=N-Linked%20Surface%20Glycan%20Biosynthesis,%20Composition,%20Inhibition,%20and%20Function%20in%20Cnidarian-Dinoflagellate%20Symbiosis&rft.jtitle=Microbial%20ecology&rft.au=Tivey,%20Trevor%20R.&rft.date=2020-07-01&rft.volume=80&rft.issue=1&rft.spage=223&rft.epage=236&rft.pages=223-236&rft.issn=0095-3628&rft.eissn=1432-184X&rft_id=info:doi/10.1007/s00248-020-01487-9&rft_dat=%3Cjstor_proqu%3E48740011%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-abdb19f424c6534650c28181277648ed614b2319ea2ec93f53a450cc3aef8e973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2420335711&rft_id=info:pmid/31982929&rft_jstor_id=48740011&rfr_iscdi=true