Loading…
Controlling cell viability and bacterial attachment through fabricating extracellular matrix-like micro/nanostructured surface on titanium implant
Good osseointegration and gingival epithelial sealing play a key role in preventing peri-implantitis of dental implants. In addition to antibacterial qualities, the transmucosal surface of the implant is beneficial to the growth of fibroblasts and epithelial cells, while its body surface is suitable...
Saved in:
Published in: | Biomedical materials (Bristol) 2020-03, Vol.15 (3), p.035002-035002 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Good osseointegration and gingival epithelial sealing play a key role in preventing peri-implantitis of dental implants. In addition to antibacterial qualities, the transmucosal surface of the implant is beneficial to the growth of fibroblasts and epithelial cells, while its body surface is suitable for the growth of osteoblasts and is resistant to epithelial cells and fibroblasts. In this study, both microgrooves mimicking the extracellular matrix (ECM) and titanium (Ti) dioxide nanotubes with different parameter settings were produced on Ti surfaces. The behavior of MG63 osteoblasts, L929 fibroblasts, SCC epithelial cells and Porphyromonas gingivalis on these decorated Ti surfaces was detected to quantify their performances in terms of osseointegration, biological sealing and antimicrobial ability. Via a scoring method based on these results, we concluded that 100-50-20-10-5 μm width grooves arranged in the horizontal direction at 2 μm depth were the priority for the design of the implant's transmucosal surface. By changing the depth to 3.6 μm and further decorating with 55 nm nanotubes, a best surface design for the implant body was acquired. Hierarchical ECM-like micro/nano patterns could provide novel designs for dental implants to achieve excellent gingival epithelial sealing and osseointegration, which would facilitate the clinical application of dental implants. |
---|---|
ISSN: | 1748-605X 1748-605X |
DOI: | 10.1088/1748-605X/ab70ee |