Loading…

Design and application of aminoacridinium organophotoredox catalysts

Recent developments in preparative photocatalysis have reshaped synthetic strategies and now represent an integral part of current organic chemistry. Due to their favourable electrochemical and photophysical properties, the nowadays most frequently used photocatalysts are based on precious Ru- and I...

Full description

Saved in:
Bibliographic Details
Published in:Chemical communications (Cambridge, England) England), 2020-02, Vol.56 (12), p.1767-1775
Main Authors: Zilate, Bouthayna, Fischer, Christian, Sparr, Christof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c439t-5a75fe8d2a4dcf1933545712ef21836abff1abbb635963560b5bccf5d7e271633
cites cdi_FETCH-LOGICAL-c439t-5a75fe8d2a4dcf1933545712ef21836abff1abbb635963560b5bccf5d7e271633
container_end_page 1775
container_issue 12
container_start_page 1767
container_title Chemical communications (Cambridge, England)
container_volume 56
creator Zilate, Bouthayna
Fischer, Christian
Sparr, Christof
description Recent developments in preparative photocatalysis have reshaped synthetic strategies and now represent an integral part of current organic chemistry. Due to their favourable electrochemical and photophysical properties, the nowadays most frequently used photocatalysts are based on precious Ru- and Ir-polypyridyl complexes. Apart from that, organic catalysts such as the acridinium salts are now commonly employed to complement transition metals to provide potentially sustainable strategies amenable to large-scale synthesis. In this feature article, the design, synthesis and application of aminoacridinium photoredox catalysts as well as their exceptionally broad range of redox properties are highlighted. Due to their modularity, this burgeoning class of organophotocatalysts is anticipated to contribute significantly to synthetic methodology development and the translation to a wide range of innovative implementations. The design, modular synthesis and applications of aminoacridinium photoredox catalysts ( e.g. R 1 = NMe 2 ) with a broad range of redox properties and compatibility with complex substrates and reaction mixtures are highlighted in this feature article.
doi_str_mv 10.1039/c9cc08524f
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2348803156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2352992567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-5a75fe8d2a4dcf1933545712ef21836abff1abbb635963560b5bccf5d7e271633</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3el4EWEavOrTY7S-QsGXhS8lTRNZkab1KQF_e_N3Jxg4PEC-fB4fAPAKcyuYYb5jeRSZowiovfAFOKcpJSwt_31nfK0wIROwFEIqyweSNkhmGDIOWO8mIL5XAWztImwTSL6vjVSDMbZxOlEdMY6Ib1pjDVjlzi_FNb1725wXjXuM4lUtF9hCMfgQIs2qJNtn4HX-7uX8jFdPD88lbeLVBLMh5SKgmrFGiRIIzXkGFNCC4iURpDhXNRaQ1HXdR7XjpVnNa2l1LQpFCpgjvEMXG7m9t59jCoMVWeCVG0rrHJjqBAmjGUY0jzSi3905UZv43ZRUcQ5onkR1dVGSe9C8EpXvTed8F8VzKp1tlXJy_In2_uIz7cjx7pTzY7-hhnB2Qb4IHevf5-DvwE7iX4V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352992567</pqid></control><display><type>article</type><title>Design and application of aminoacridinium organophotoredox catalysts</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Zilate, Bouthayna ; Fischer, Christian ; Sparr, Christof</creator><creatorcontrib>Zilate, Bouthayna ; Fischer, Christian ; Sparr, Christof</creatorcontrib><description>Recent developments in preparative photocatalysis have reshaped synthetic strategies and now represent an integral part of current organic chemistry. Due to their favourable electrochemical and photophysical properties, the nowadays most frequently used photocatalysts are based on precious Ru- and Ir-polypyridyl complexes. Apart from that, organic catalysts such as the acridinium salts are now commonly employed to complement transition metals to provide potentially sustainable strategies amenable to large-scale synthesis. In this feature article, the design, synthesis and application of aminoacridinium photoredox catalysts as well as their exceptionally broad range of redox properties are highlighted. Due to their modularity, this burgeoning class of organophotocatalysts is anticipated to contribute significantly to synthetic methodology development and the translation to a wide range of innovative implementations. The design, modular synthesis and applications of aminoacridinium photoredox catalysts ( e.g. R 1 = NMe 2 ) with a broad range of redox properties and compatibility with complex substrates and reaction mixtures are highlighted in this feature article.</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/c9cc08524f</identifier><identifier>PMID: 31998897</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Catalysts ; Chemical synthesis ; Modularity ; Organic chemistry ; Photocatalysis ; Transition metals</subject><ispartof>Chemical communications (Cambridge, England), 2020-02, Vol.56 (12), p.1767-1775</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-5a75fe8d2a4dcf1933545712ef21836abff1abbb635963560b5bccf5d7e271633</citedby><cites>FETCH-LOGICAL-c439t-5a75fe8d2a4dcf1933545712ef21836abff1abbb635963560b5bccf5d7e271633</cites><orcidid>0000-0002-4213-0941 ; 0000-0002-5023-1080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31998897$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zilate, Bouthayna</creatorcontrib><creatorcontrib>Fischer, Christian</creatorcontrib><creatorcontrib>Sparr, Christof</creatorcontrib><title>Design and application of aminoacridinium organophotoredox catalysts</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>Recent developments in preparative photocatalysis have reshaped synthetic strategies and now represent an integral part of current organic chemistry. Due to their favourable electrochemical and photophysical properties, the nowadays most frequently used photocatalysts are based on precious Ru- and Ir-polypyridyl complexes. Apart from that, organic catalysts such as the acridinium salts are now commonly employed to complement transition metals to provide potentially sustainable strategies amenable to large-scale synthesis. In this feature article, the design, synthesis and application of aminoacridinium photoredox catalysts as well as their exceptionally broad range of redox properties are highlighted. Due to their modularity, this burgeoning class of organophotocatalysts is anticipated to contribute significantly to synthetic methodology development and the translation to a wide range of innovative implementations. The design, modular synthesis and applications of aminoacridinium photoredox catalysts ( e.g. R 1 = NMe 2 ) with a broad range of redox properties and compatibility with complex substrates and reaction mixtures are highlighted in this feature article.</description><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Modularity</subject><subject>Organic chemistry</subject><subject>Photocatalysis</subject><subject>Transition metals</subject><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgipvTi3el4EWEavOrTY7S-QsGXhS8lTRNZkab1KQF_e_N3Jxg4PEC-fB4fAPAKcyuYYb5jeRSZowiovfAFOKcpJSwt_31nfK0wIROwFEIqyweSNkhmGDIOWO8mIL5XAWztImwTSL6vjVSDMbZxOlEdMY6Ib1pjDVjlzi_FNb1725wXjXuM4lUtF9hCMfgQIs2qJNtn4HX-7uX8jFdPD88lbeLVBLMh5SKgmrFGiRIIzXkGFNCC4iURpDhXNRaQ1HXdR7XjpVnNa2l1LQpFCpgjvEMXG7m9t59jCoMVWeCVG0rrHJjqBAmjGUY0jzSi3905UZv43ZRUcQ5onkR1dVGSe9C8EpXvTed8F8VzKp1tlXJy_In2_uIz7cjx7pTzY7-hhnB2Qb4IHevf5-DvwE7iX4V</recordid><startdate>20200211</startdate><enddate>20200211</enddate><creator>Zilate, Bouthayna</creator><creator>Fischer, Christian</creator><creator>Sparr, Christof</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4213-0941</orcidid><orcidid>https://orcid.org/0000-0002-5023-1080</orcidid></search><sort><creationdate>20200211</creationdate><title>Design and application of aminoacridinium organophotoredox catalysts</title><author>Zilate, Bouthayna ; Fischer, Christian ; Sparr, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-5a75fe8d2a4dcf1933545712ef21836abff1abbb635963560b5bccf5d7e271633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Modularity</topic><topic>Organic chemistry</topic><topic>Photocatalysis</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zilate, Bouthayna</creatorcontrib><creatorcontrib>Fischer, Christian</creatorcontrib><creatorcontrib>Sparr, Christof</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zilate, Bouthayna</au><au>Fischer, Christian</au><au>Sparr, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and application of aminoacridinium organophotoredox catalysts</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2020-02-11</date><risdate>2020</risdate><volume>56</volume><issue>12</issue><spage>1767</spage><epage>1775</epage><pages>1767-1775</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>Recent developments in preparative photocatalysis have reshaped synthetic strategies and now represent an integral part of current organic chemistry. Due to their favourable electrochemical and photophysical properties, the nowadays most frequently used photocatalysts are based on precious Ru- and Ir-polypyridyl complexes. Apart from that, organic catalysts such as the acridinium salts are now commonly employed to complement transition metals to provide potentially sustainable strategies amenable to large-scale synthesis. In this feature article, the design, synthesis and application of aminoacridinium photoredox catalysts as well as their exceptionally broad range of redox properties are highlighted. Due to their modularity, this burgeoning class of organophotocatalysts is anticipated to contribute significantly to synthetic methodology development and the translation to a wide range of innovative implementations. The design, modular synthesis and applications of aminoacridinium photoredox catalysts ( e.g. R 1 = NMe 2 ) with a broad range of redox properties and compatibility with complex substrates and reaction mixtures are highlighted in this feature article.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31998897</pmid><doi>10.1039/c9cc08524f</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4213-0941</orcidid><orcidid>https://orcid.org/0000-0002-5023-1080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-7345
ispartof Chemical communications (Cambridge, England), 2020-02, Vol.56 (12), p.1767-1775
issn 1359-7345
1364-548X
language eng
recordid cdi_proquest_miscellaneous_2348803156
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Catalysts
Chemical synthesis
Modularity
Organic chemistry
Photocatalysis
Transition metals
title Design and application of aminoacridinium organophotoredox catalysts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20application%20of%20aminoacridinium%20organophotoredox%20catalysts&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Zilate,%20Bouthayna&rft.date=2020-02-11&rft.volume=56&rft.issue=12&rft.spage=1767&rft.epage=1775&rft.pages=1767-1775&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/c9cc08524f&rft_dat=%3Cproquest_cross%3E2352992567%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c439t-5a75fe8d2a4dcf1933545712ef21836abff1abbb635963560b5bccf5d7e271633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2352992567&rft_id=info:pmid/31998897&rfr_iscdi=true