Loading…

Fluorescent Probe for Transmembrane Dynamics during Osmotic Effects

Membrane tension pores determine organelle dynamics and functions, giving rise to physical observables during the cell death process. While fluorescent organelle-targeted probes for specific chemical analytes are increasingly available, subcellular dynamic processes involving not only chemical param...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2020-03, Vol.92 (5), p.3888-3895
Main Authors: Palacios-Serrato, Eva, Araiza-Olivera, Daniela, Jiménez-Sánchez, Arturo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Membrane tension pores determine organelle dynamics and functions, giving rise to physical observables during the cell death process. While fluorescent organelle-targeted probes for specific chemical analytes are increasingly available, subcellular dynamic processes involving not only chemical parameters but also physicochemical and physical parameters are uncommon. Here, we report a mitochondrial chemical probe, named RCN, rationally designed to monitor osmotic effects during transmembrane tension pore formation by using local mitochondrial polarity and a subcellular localization redistribution property of the probe. Utilizing fluorescence spectroscopy, high-resolution confocal imaging, and spectrally resolved confocal microscopy, we provide a new correlation between mitochondrial dynamics and bleb vesicle formation using osmotic pressure stimuli in the cell, where the mitochondrial local polarity was found to drastically increase. The RCN provides a reliable protocol to assess transmembrane pore formation driven by osmotic pressure increments through local polarity variations and is a more robust physicochemical parameter allowing the health and decease status of the cell to be measured.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.9b05390