Loading…
Lense-Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system
Radio pulsars in short-period eccentric binary orbits can be used to study both gravitational dynamics and binary evolution. The binary system containing PSR J1141-6545 includes a massive white dwarf (WD) companion that formed before the gravitationally bound young radio pulsar. We observed a tempor...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2020-01, Vol.367 (6477), p.577-580 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c366t-c14b0cbce77f6628f04a5e9ab14bed450a86718dbc254e4de2a0e52286610b723 |
---|---|
cites | cdi_FETCH-LOGICAL-c366t-c14b0cbce77f6628f04a5e9ab14bed450a86718dbc254e4de2a0e52286610b723 |
container_end_page | 580 |
container_issue | 6477 |
container_start_page | 577 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 367 |
creator | Krishnan, V Venkatraman Bailes, M van Straten, W Wex, N Freire, P C C Keane, E F Tauris, T M Rosado, P A Bhat, N D R Flynn, C Jameson, A Osłowski, S |
description | Radio pulsars in short-period eccentric binary orbits can be used to study both gravitational dynamics and binary evolution. The binary system containing PSR J1141-6545 includes a massive white dwarf (WD) companion that formed before the gravitationally bound young radio pulsar. We observed a temporal evolution of the orbital inclination of this pulsar that we infer is caused by a combination of a Newtonian quadrupole moment and Lense-Thirring (LT) precession of the orbit resulting from rapid rotation of the WD. LT precession, an effect of relativistic frame dragging, is a prediction of general relativity. This detection is consistent with an evolutionary scenario in which the WD accreted matter from the pulsar progenitor, spinning up the WD to a period of |
doi_str_mv | 10.1126/science.aax7007 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2350095789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2348878078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-c14b0cbce77f6628f04a5e9ab14bed450a86718dbc254e4de2a0e52286610b723</originalsourceid><addsrcrecordid>eNpdkLtPwzAQhy0EoqUws6FILCxpz078yIgqXlIllrISOc6lTZVHsROV_vc4amBgss6_7053HyG3FOaUMrFwpsTG4Fzrbwkgz8iUQsLDhEF0TqYAkQgVSD4hV87tAHyWRJdkEjEAKriYks8VNg7D9ba0tmw2QWF1jUFu9WYzlGWT9wbzIDsGOii060LbdrobosO27Dx50LbwmI-zstH2GOz7ymkbuKPrsL4mF4WuHN6M74x8PD-tl6_h6v3lbfm4Ck0kRBcaGmdgMoNSFkIwVUCsOSY68_-Yxxy0EpKqPDOMxxjnyDQgZ0wJQSGTLJqRh9PcvW2_enRdWpfOYFXpBtvepSziw_FSJR69_4fu2t42fjtPxUpJL0x5anGijG2ds1ike1vW_r6UQjqoT0f16ajed9yNc_usxvyP_3Ud_QAsIoGG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2348878078</pqid></control><display><type>article</type><title>Lense-Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system</title><source>Science magazine suite</source><source>Alma/SFX Local Collection</source><creator>Krishnan, V Venkatraman ; Bailes, M ; van Straten, W ; Wex, N ; Freire, P C C ; Keane, E F ; Tauris, T M ; Rosado, P A ; Bhat, N D R ; Flynn, C ; Jameson, A ; Osłowski, S</creator><creatorcontrib>Krishnan, V Venkatraman ; Bailes, M ; van Straten, W ; Wex, N ; Freire, P C C ; Keane, E F ; Tauris, T M ; Rosado, P A ; Bhat, N D R ; Flynn, C ; Jameson, A ; Osłowski, S</creatorcontrib><description>Radio pulsars in short-period eccentric binary orbits can be used to study both gravitational dynamics and binary evolution. The binary system containing PSR J1141-6545 includes a massive white dwarf (WD) companion that formed before the gravitationally bound young radio pulsar. We observed a temporal evolution of the orbital inclination of this pulsar that we infer is caused by a combination of a Newtonian quadrupole moment and Lense-Thirring (LT) precession of the orbit resulting from rapid rotation of the WD. LT precession, an effect of relativistic frame dragging, is a prediction of general relativity. This detection is consistent with an evolutionary scenario in which the WD accreted matter from the pulsar progenitor, spinning up the WD to a period of <200 seconds.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aax7007</identifier><identifier>PMID: 32001656</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Binary system ; Companion stars ; Drift ; Eccentric orbits ; Evolution ; Gravity ; Inclination ; Precession ; Predictions ; Pulsars ; Quadrupoles ; Radio ; Relativity ; Rotation ; Stellar system evolution ; Theory of relativity ; White dwarf stars</subject><ispartof>Science (American Association for the Advancement of Science), 2020-01, Vol.367 (6477), p.577-580</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-c14b0cbce77f6628f04a5e9ab14bed450a86718dbc254e4de2a0e52286610b723</citedby><cites>FETCH-LOGICAL-c366t-c14b0cbce77f6628f04a5e9ab14bed450a86718dbc254e4de2a0e52286610b723</cites><orcidid>0000-0003-4058-2837 ; 0000-0002-2333-2935 ; 0000-0002-8383-5059 ; 0000-0001-9518-9819 ; 0000-0002-4553-655X ; 0000-0002-3865-7265 ; 0000-0003-3294-3081 ; 0000-0002-0996-3001 ; 0000-0003-0289-0732 ; 0000-0003-2519-7375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32001656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishnan, V Venkatraman</creatorcontrib><creatorcontrib>Bailes, M</creatorcontrib><creatorcontrib>van Straten, W</creatorcontrib><creatorcontrib>Wex, N</creatorcontrib><creatorcontrib>Freire, P C C</creatorcontrib><creatorcontrib>Keane, E F</creatorcontrib><creatorcontrib>Tauris, T M</creatorcontrib><creatorcontrib>Rosado, P A</creatorcontrib><creatorcontrib>Bhat, N D R</creatorcontrib><creatorcontrib>Flynn, C</creatorcontrib><creatorcontrib>Jameson, A</creatorcontrib><creatorcontrib>Osłowski, S</creatorcontrib><title>Lense-Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Radio pulsars in short-period eccentric binary orbits can be used to study both gravitational dynamics and binary evolution. The binary system containing PSR J1141-6545 includes a massive white dwarf (WD) companion that formed before the gravitationally bound young radio pulsar. We observed a temporal evolution of the orbital inclination of this pulsar that we infer is caused by a combination of a Newtonian quadrupole moment and Lense-Thirring (LT) precession of the orbit resulting from rapid rotation of the WD. LT precession, an effect of relativistic frame dragging, is a prediction of general relativity. This detection is consistent with an evolutionary scenario in which the WD accreted matter from the pulsar progenitor, spinning up the WD to a period of <200 seconds.</description><subject>Binary system</subject><subject>Companion stars</subject><subject>Drift</subject><subject>Eccentric orbits</subject><subject>Evolution</subject><subject>Gravity</subject><subject>Inclination</subject><subject>Precession</subject><subject>Predictions</subject><subject>Pulsars</subject><subject>Quadrupoles</subject><subject>Radio</subject><subject>Relativity</subject><subject>Rotation</subject><subject>Stellar system evolution</subject><subject>Theory of relativity</subject><subject>White dwarf stars</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkLtPwzAQhy0EoqUws6FILCxpz078yIgqXlIllrISOc6lTZVHsROV_vc4amBgss6_7053HyG3FOaUMrFwpsTG4Fzrbwkgz8iUQsLDhEF0TqYAkQgVSD4hV87tAHyWRJdkEjEAKriYks8VNg7D9ba0tmw2QWF1jUFu9WYzlGWT9wbzIDsGOii060LbdrobosO27Dx50LbwmI-zstH2GOz7ymkbuKPrsL4mF4WuHN6M74x8PD-tl6_h6v3lbfm4Ck0kRBcaGmdgMoNSFkIwVUCsOSY68_-Yxxy0EpKqPDOMxxjnyDQgZ0wJQSGTLJqRh9PcvW2_enRdWpfOYFXpBtvepSziw_FSJR69_4fu2t42fjtPxUpJL0x5anGijG2ds1ike1vW_r6UQjqoT0f16ajed9yNc_usxvyP_3Ud_QAsIoGG</recordid><startdate>20200131</startdate><enddate>20200131</enddate><creator>Krishnan, V Venkatraman</creator><creator>Bailes, M</creator><creator>van Straten, W</creator><creator>Wex, N</creator><creator>Freire, P C C</creator><creator>Keane, E F</creator><creator>Tauris, T M</creator><creator>Rosado, P A</creator><creator>Bhat, N D R</creator><creator>Flynn, C</creator><creator>Jameson, A</creator><creator>Osłowski, S</creator><general>The American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4058-2837</orcidid><orcidid>https://orcid.org/0000-0002-2333-2935</orcidid><orcidid>https://orcid.org/0000-0002-8383-5059</orcidid><orcidid>https://orcid.org/0000-0001-9518-9819</orcidid><orcidid>https://orcid.org/0000-0002-4553-655X</orcidid><orcidid>https://orcid.org/0000-0002-3865-7265</orcidid><orcidid>https://orcid.org/0000-0003-3294-3081</orcidid><orcidid>https://orcid.org/0000-0002-0996-3001</orcidid><orcidid>https://orcid.org/0000-0003-0289-0732</orcidid><orcidid>https://orcid.org/0000-0003-2519-7375</orcidid></search><sort><creationdate>20200131</creationdate><title>Lense-Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system</title><author>Krishnan, V Venkatraman ; Bailes, M ; van Straten, W ; Wex, N ; Freire, P C C ; Keane, E F ; Tauris, T M ; Rosado, P A ; Bhat, N D R ; Flynn, C ; Jameson, A ; Osłowski, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-c14b0cbce77f6628f04a5e9ab14bed450a86718dbc254e4de2a0e52286610b723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binary system</topic><topic>Companion stars</topic><topic>Drift</topic><topic>Eccentric orbits</topic><topic>Evolution</topic><topic>Gravity</topic><topic>Inclination</topic><topic>Precession</topic><topic>Predictions</topic><topic>Pulsars</topic><topic>Quadrupoles</topic><topic>Radio</topic><topic>Relativity</topic><topic>Rotation</topic><topic>Stellar system evolution</topic><topic>Theory of relativity</topic><topic>White dwarf stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, V Venkatraman</creatorcontrib><creatorcontrib>Bailes, M</creatorcontrib><creatorcontrib>van Straten, W</creatorcontrib><creatorcontrib>Wex, N</creatorcontrib><creatorcontrib>Freire, P C C</creatorcontrib><creatorcontrib>Keane, E F</creatorcontrib><creatorcontrib>Tauris, T M</creatorcontrib><creatorcontrib>Rosado, P A</creatorcontrib><creatorcontrib>Bhat, N D R</creatorcontrib><creatorcontrib>Flynn, C</creatorcontrib><creatorcontrib>Jameson, A</creatorcontrib><creatorcontrib>Osłowski, S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishnan, V Venkatraman</au><au>Bailes, M</au><au>van Straten, W</au><au>Wex, N</au><au>Freire, P C C</au><au>Keane, E F</au><au>Tauris, T M</au><au>Rosado, P A</au><au>Bhat, N D R</au><au>Flynn, C</au><au>Jameson, A</au><au>Osłowski, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lense-Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-01-31</date><risdate>2020</risdate><volume>367</volume><issue>6477</issue><spage>577</spage><epage>580</epage><pages>577-580</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Radio pulsars in short-period eccentric binary orbits can be used to study both gravitational dynamics and binary evolution. The binary system containing PSR J1141-6545 includes a massive white dwarf (WD) companion that formed before the gravitationally bound young radio pulsar. We observed a temporal evolution of the orbital inclination of this pulsar that we infer is caused by a combination of a Newtonian quadrupole moment and Lense-Thirring (LT) precession of the orbit resulting from rapid rotation of the WD. LT precession, an effect of relativistic frame dragging, is a prediction of general relativity. This detection is consistent with an evolutionary scenario in which the WD accreted matter from the pulsar progenitor, spinning up the WD to a period of <200 seconds.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32001656</pmid><doi>10.1126/science.aax7007</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4058-2837</orcidid><orcidid>https://orcid.org/0000-0002-2333-2935</orcidid><orcidid>https://orcid.org/0000-0002-8383-5059</orcidid><orcidid>https://orcid.org/0000-0001-9518-9819</orcidid><orcidid>https://orcid.org/0000-0002-4553-655X</orcidid><orcidid>https://orcid.org/0000-0002-3865-7265</orcidid><orcidid>https://orcid.org/0000-0003-3294-3081</orcidid><orcidid>https://orcid.org/0000-0002-0996-3001</orcidid><orcidid>https://orcid.org/0000-0003-0289-0732</orcidid><orcidid>https://orcid.org/0000-0003-2519-7375</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2020-01, Vol.367 (6477), p.577-580 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_2350095789 |
source | Science magazine suite; Alma/SFX Local Collection |
subjects | Binary system Companion stars Drift Eccentric orbits Evolution Gravity Inclination Precession Predictions Pulsars Quadrupoles Radio Relativity Rotation Stellar system evolution Theory of relativity White dwarf stars |
title | Lense-Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lense-Thirring%20frame%20dragging%20induced%20by%20a%20fast-rotating%20white%20dwarf%20in%20a%20binary%20pulsar%20system&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Krishnan,%20V%20Venkatraman&rft.date=2020-01-31&rft.volume=367&rft.issue=6477&rft.spage=577&rft.epage=580&rft.pages=577-580&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aax7007&rft_dat=%3Cproquest_cross%3E2348878078%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-c14b0cbce77f6628f04a5e9ab14bed450a86718dbc254e4de2a0e52286610b723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2348878078&rft_id=info:pmid/32001656&rfr_iscdi=true |