Loading…
Iterative Learning Control for MIMO Nonlinear Systems With Iteration-Varying Trial Lengths Using Modified Composite Energy Function Analysis
Most works dealing with trajectory tracking problems in the iterative learning control (ILC) literature assume an iteration domain that has identical trial lengths. This fundamental assumption may not always hold in practical applications. To address iteration-varying trial lengths, a new structure...
Saved in:
Published in: | IEEE transactions on cybernetics 2021-12, Vol.51 (12), p.6080-6090 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-e34b11c3335b2aa5a56a9094b3203ecaabb5cd7365ad077b29d28540253eb1193 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-e34b11c3335b2aa5a56a9094b3203ecaabb5cd7365ad077b29d28540253eb1193 |
container_end_page | 6090 |
container_issue | 12 |
container_start_page | 6080 |
container_title | IEEE transactions on cybernetics |
container_volume | 51 |
creator | Jin, Xu |
description | Most works dealing with trajectory tracking problems in the iterative learning control (ILC) literature assume an iteration domain that has identical trial lengths. This fundamental assumption may not always hold in practical applications. To address iteration-varying trial lengths, a new structure of ILC laws has been presented in this article, based on the newly proposed modified composite energy function (mCEF) analysis. The proposed approach is a feedback control scheme that utilizes tracking errors in the current iteration, so that it can deal with iteration-varying system uncertainties. It is also a unified framework such that the traditional ILC problems with identical trial lengths are shown to be a special case of the more general problem considered in this article. Multi-input-multi-output (MIMO) nonlinear systems are considered, which can be subject to parametric system uncertainties and an unknown control input gain matrix function. We show that in the closed loop analysis, the proposed control scheme can guarantee asymptotic convergence on the full-state tracking error over the iteration domain, in the sense of the L^{2}_{T_{k}} norm, with T_{k} being the trial length of the k th iteration. In the end, a simulation example is shown to illustrate the efficacy of the proposed ILC algorithm. |
doi_str_mv | 10.1109/TCYB.2020.2966625 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_2350900380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8979175</ieee_id><sourcerecordid>2612467511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-e34b11c3335b2aa5a56a9094b3203ecaabb5cd7365ad077b29d28540253eb1193</originalsourceid><addsrcrecordid>eNpdkc1O4zAUha3RoAEBDzAaaWRpNmxS_BM78ZKpgKnUwoICYhU5yW0xSuxiO0h9Bx56HLXTxXhj697vHN3rg9B3SiaUEnW5nL78njDCyIQpKSUTX9AJo7LMGCvE18NbFsfoPIQ3kk6ZSqr8ho45I5QRzk_Q5yyC19F8AJ6D9tbYNZ46G73r8Mp5vJgt7vGds52xqY0ftiFCH_Czia94L3U2e9J-OyqX3uguGdl1fA34MYy1hWvNykCbbPuNCyYCvrbg11t8M9hmlOMrq7ttMOEMHa10F-B8f5-ix5vr5fRPNr-_nU2v5lnDcxUz4HlNacM5FzXTWmghtSIqr9NaHBqt61o0bcGl0C0pipqplpUiJ0xwSELFT9HFznfj3fsAIVa9CQ10nbbghlAxLogihJckob_-Q9_c4NO8iZKU5bIQlCaK7qjGuxA8rKqNN336lIqSakyrGtOqxrSqfVpJ83PvPNQ9tAfFv2wS8GMHGAA4tEtVKFoI_hdVFJkG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612467511</pqid></control><display><type>article</type><title>Iterative Learning Control for MIMO Nonlinear Systems With Iteration-Varying Trial Lengths Using Modified Composite Energy Function Analysis</title><source>IEEE Xplore (Online service)</source><creator>Jin, Xu</creator><creatorcontrib>Jin, Xu</creatorcontrib><description><![CDATA[Most works dealing with trajectory tracking problems in the iterative learning control (ILC) literature assume an iteration domain that has identical trial lengths. This fundamental assumption may not always hold in practical applications. To address iteration-varying trial lengths, a new structure of ILC laws has been presented in this article, based on the newly proposed modified composite energy function (mCEF) analysis. The proposed approach is a feedback control scheme that utilizes tracking errors in the current iteration, so that it can deal with iteration-varying system uncertainties. It is also a unified framework such that the traditional ILC problems with identical trial lengths are shown to be a special case of the more general problem considered in this article. Multi-input-multi-output (MIMO) nonlinear systems are considered, which can be subject to parametric system uncertainties and an unknown control input gain matrix function. We show that in the closed loop analysis, the proposed control scheme can guarantee asymptotic convergence on the full-state tracking error over the iteration domain, in the sense of the <inline-formula> <tex-math notation="LaTeX">L^{2}_{T_{k}} </tex-math></inline-formula> norm, with <inline-formula> <tex-math notation="LaTeX">T_{k} </tex-math></inline-formula> being the trial length of the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>th iteration. In the end, a simulation example is shown to illustrate the efficacy of the proposed ILC algorithm.]]></description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2020.2966625</identifier><identifier>PMID: 32012033</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Closed loops ; Domains ; Feedback control ; Function analysis ; Indicator functions ; iteration-varying trial lengths ; Iterative learning control ; iterative learning control (ILC) ; Iterative methods ; Learning ; Linear systems ; MIMO (control systems) ; MIMO communication ; modified composite energy functions (mCEFs) analysis ; Nonlinear control ; Nonlinear systems ; Tracking control ; Tracking errors ; Uncertainty</subject><ispartof>IEEE transactions on cybernetics, 2021-12, Vol.51 (12), p.6080-6090</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-e34b11c3335b2aa5a56a9094b3203ecaabb5cd7365ad077b29d28540253eb1193</citedby><cites>FETCH-LOGICAL-c349t-e34b11c3335b2aa5a56a9094b3203ecaabb5cd7365ad077b29d28540253eb1193</cites><orcidid>0000-0001-9788-2051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8979175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32012033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Xu</creatorcontrib><title>Iterative Learning Control for MIMO Nonlinear Systems With Iteration-Varying Trial Lengths Using Modified Composite Energy Function Analysis</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description><![CDATA[Most works dealing with trajectory tracking problems in the iterative learning control (ILC) literature assume an iteration domain that has identical trial lengths. This fundamental assumption may not always hold in practical applications. To address iteration-varying trial lengths, a new structure of ILC laws has been presented in this article, based on the newly proposed modified composite energy function (mCEF) analysis. The proposed approach is a feedback control scheme that utilizes tracking errors in the current iteration, so that it can deal with iteration-varying system uncertainties. It is also a unified framework such that the traditional ILC problems with identical trial lengths are shown to be a special case of the more general problem considered in this article. Multi-input-multi-output (MIMO) nonlinear systems are considered, which can be subject to parametric system uncertainties and an unknown control input gain matrix function. We show that in the closed loop analysis, the proposed control scheme can guarantee asymptotic convergence on the full-state tracking error over the iteration domain, in the sense of the <inline-formula> <tex-math notation="LaTeX">L^{2}_{T_{k}} </tex-math></inline-formula> norm, with <inline-formula> <tex-math notation="LaTeX">T_{k} </tex-math></inline-formula> being the trial length of the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>th iteration. In the end, a simulation example is shown to illustrate the efficacy of the proposed ILC algorithm.]]></description><subject>Algorithms</subject><subject>Closed loops</subject><subject>Domains</subject><subject>Feedback control</subject><subject>Function analysis</subject><subject>Indicator functions</subject><subject>iteration-varying trial lengths</subject><subject>Iterative learning control</subject><subject>iterative learning control (ILC)</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Linear systems</subject><subject>MIMO (control systems)</subject><subject>MIMO communication</subject><subject>modified composite energy functions (mCEFs) analysis</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpdkc1O4zAUha3RoAEBDzAaaWRpNmxS_BM78ZKpgKnUwoICYhU5yW0xSuxiO0h9Bx56HLXTxXhj697vHN3rg9B3SiaUEnW5nL78njDCyIQpKSUTX9AJo7LMGCvE18NbFsfoPIQ3kk6ZSqr8ho45I5QRzk_Q5yyC19F8AJ6D9tbYNZ46G73r8Mp5vJgt7vGds52xqY0ftiFCH_Czia94L3U2e9J-OyqX3uguGdl1fA34MYy1hWvNykCbbPuNCyYCvrbg11t8M9hmlOMrq7ttMOEMHa10F-B8f5-ix5vr5fRPNr-_nU2v5lnDcxUz4HlNacM5FzXTWmghtSIqr9NaHBqt61o0bcGl0C0pipqplpUiJ0xwSELFT9HFznfj3fsAIVa9CQ10nbbghlAxLogihJckob_-Q9_c4NO8iZKU5bIQlCaK7qjGuxA8rKqNN336lIqSakyrGtOqxrSqfVpJ83PvPNQ9tAfFv2wS8GMHGAA4tEtVKFoI_hdVFJkG</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Jin, Xu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9788-2051</orcidid></search><sort><creationdate>20211201</creationdate><title>Iterative Learning Control for MIMO Nonlinear Systems With Iteration-Varying Trial Lengths Using Modified Composite Energy Function Analysis</title><author>Jin, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-e34b11c3335b2aa5a56a9094b3203ecaabb5cd7365ad077b29d28540253eb1193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Closed loops</topic><topic>Domains</topic><topic>Feedback control</topic><topic>Function analysis</topic><topic>Indicator functions</topic><topic>iteration-varying trial lengths</topic><topic>Iterative learning control</topic><topic>iterative learning control (ILC)</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Linear systems</topic><topic>MIMO (control systems)</topic><topic>MIMO communication</topic><topic>modified composite energy functions (mCEFs) analysis</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Learning Control for MIMO Nonlinear Systems With Iteration-Varying Trial Lengths Using Modified Composite Energy Function Analysis</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>51</volume><issue>12</issue><spage>6080</spage><epage>6090</epage><pages>6080-6090</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract><![CDATA[Most works dealing with trajectory tracking problems in the iterative learning control (ILC) literature assume an iteration domain that has identical trial lengths. This fundamental assumption may not always hold in practical applications. To address iteration-varying trial lengths, a new structure of ILC laws has been presented in this article, based on the newly proposed modified composite energy function (mCEF) analysis. The proposed approach is a feedback control scheme that utilizes tracking errors in the current iteration, so that it can deal with iteration-varying system uncertainties. It is also a unified framework such that the traditional ILC problems with identical trial lengths are shown to be a special case of the more general problem considered in this article. Multi-input-multi-output (MIMO) nonlinear systems are considered, which can be subject to parametric system uncertainties and an unknown control input gain matrix function. We show that in the closed loop analysis, the proposed control scheme can guarantee asymptotic convergence on the full-state tracking error over the iteration domain, in the sense of the <inline-formula> <tex-math notation="LaTeX">L^{2}_{T_{k}} </tex-math></inline-formula> norm, with <inline-formula> <tex-math notation="LaTeX">T_{k} </tex-math></inline-formula> being the trial length of the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>th iteration. In the end, a simulation example is shown to illustrate the efficacy of the proposed ILC algorithm.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>32012033</pmid><doi>10.1109/TCYB.2020.2966625</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9788-2051</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2021-12, Vol.51 (12), p.6080-6090 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_proquest_miscellaneous_2350900380 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Closed loops Domains Feedback control Function analysis Indicator functions iteration-varying trial lengths Iterative learning control iterative learning control (ILC) Iterative methods Learning Linear systems MIMO (control systems) MIMO communication modified composite energy functions (mCEFs) analysis Nonlinear control Nonlinear systems Tracking control Tracking errors Uncertainty |
title | Iterative Learning Control for MIMO Nonlinear Systems With Iteration-Varying Trial Lengths Using Modified Composite Energy Function Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Learning%20Control%20for%20MIMO%20Nonlinear%20Systems%20With%20Iteration-Varying%20Trial%20Lengths%20Using%20Modified%20Composite%20Energy%20Function%20Analysis&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Jin,%20Xu&rft.date=2021-12-01&rft.volume=51&rft.issue=12&rft.spage=6080&rft.epage=6090&rft.pages=6080-6090&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2020.2966625&rft_dat=%3Cproquest_ieee_%3E2612467511%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-e34b11c3335b2aa5a56a9094b3203ecaabb5cd7365ad077b29d28540253eb1193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612467511&rft_id=info:pmid/32012033&rft_ieee_id=8979175&rfr_iscdi=true |