Loading…

Compact Series Visco-Elastic Joint (SVEJ) for Smooth Torque Control

The design and control of a new series-viscous-elastic joint are presented. The proposed joint consists of 3D printed parts compressing nonlinear elastic silicone springs. The use of silicone springs is the main novelty of the system; they exhibit internal damping, which enhances system performance...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on haptics 2020-01, Vol.13 (1), p.226-232
Main Authors: Chiaradia, Domenico, Tiseni, Luca, Frisoli, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The design and control of a new series-viscous-elastic joint are presented. The proposed joint consists of 3D printed parts compressing nonlinear elastic silicone springs. The use of silicone springs is the main novelty of the system; they exhibit internal damping, which enhances system performance allowing a simpler and more stable control. Their stiffness allows the system to bear a torque of about 4.5 Nm at a deformation angle of about 20 degrees. In this article, the system is modeled using the Neo-Hookean material model and then characterized through experiments to build the joint torque estimator. A proportional torque controller is implemented to evaluate bandwidth, transparency, impedance rendering, and stability, obtaining satisfactory results. The bandwidth ranges from 6.9 to 9.9 Hz depending on chirp input torque amplitude, as the system is nonlinear. The proposed solution is compact and cheap; both the design and the torque controller are suitable for future integration in an exoskeleton, or a cooperative robot, or a haptic device. SVEJ works as a torque sensor and introduces compliance between the motor and the environment, enhancing safety for robotic devices interacting with humans.
ISSN:1939-1412
2329-4051
DOI:10.1109/TOH.2020.2970912