Loading…
Survivability Prognosis for Lung Cancer Patients at Different Severity Stages by a Risk Factor-Based Bayesian Network Modeling
Lung cancer is a major reason of mortalities. Estimating the survivability for this disease has become a key issue to families, hospitals, and countries. A conditional Gaussian Bayesian network model was presented in this study. This model considered 15 risk factors to predict the survivability of a...
Saved in:
Published in: | Journal of medical systems 2020-03, Vol.44 (3), p.65-65, Article 65 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lung cancer is a major reason of mortalities. Estimating the survivability for this disease has become a key issue to families, hospitals, and countries. A conditional Gaussian Bayesian network model was presented in this study. This model considered 15 risk factors to predict the survivability of a lung cancer patient at 4 severity stages. We surveyed 1075 patients. The presented model is constructed by using the demographic, diagnosed-based, and prior-utilization variables. The proposed model for the survivability prognosis at different four stages performed R
2
of 93.57%, 86.83%, 67.22%, and 52.94%, respectively. The model predicted the lung cancer survivability with high accuracy compared with the reported models. Our model also shows that it reached the ceiling of an ideal Bayesian network. |
---|---|
ISSN: | 0148-5598 1573-689X |
DOI: | 10.1007/s10916-020-1537-5 |