Loading…

Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity

We report on mechanically strong, water-insoluble hydrogen-bonded nanofiber mats composed of a hydrophilic polymer and a natural polyphenol that exhibit prolonged antioxidant activity. The high performance of fibrous mats resulted from the formation of a network of hydrogen bonds between a low-molec...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2020-03, Vol.12 (9), p.11026-11035
Main Authors: Gaikwad, Adwait, Hlushko, Hanna, Karimineghlani, Parvin, Selin, Victor, Sukhishvili, Svetlana A
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23
cites cdi_FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23
container_end_page 11035
container_issue 9
container_start_page 11026
container_title ACS applied materials & interfaces
container_volume 12
creator Gaikwad, Adwait
Hlushko, Hanna
Karimineghlani, Parvin
Selin, Victor
Sukhishvili, Svetlana A
description We report on mechanically strong, water-insoluble hydrogen-bonded nanofiber mats composed of a hydrophilic polymer and a natural polyphenol that exhibit prolonged antioxidant activity. The high performance of fibrous mats resulted from the formation of a network of hydrogen bonds between a low-molecular-weight polyphenol (tannic acid, TA) and a water-soluble polymer (polyvinylpyrrolidone, PVP) and could be precisely controlled by the TA-to-PVP ratio. Dramatic enhancement (5- to 10-fold) in tensile strength, toughness, and Young’s moduli of the PVP/TA fiber mats (as compared to those of pristine PVP fibers) was achieved at the maximum density of hydrogen bonds, which occurred at ∼0.2–0.4 molar fractions of TA. The formation of hydrogen bonds was confirmed by an increase in the glass-transition temperature of the polymer after binding with TA. When exposed to water, the fibers exhibited composition- and pH-dependent stabilities, with the TA-enriched fibers fully preserving their integrity in acidic and neutral media. Importantly, the fiber mats exhibited strong antioxidant activity with dual (burst and prolonged) activity profiles, which could be controlled via fiber composition, a feature useful for controlling radical-scavenging rates in environmental and biological applications.
doi_str_mv 10.1021/acsami.9b23212
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2354152251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354152251</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwMqKMCJHiZx5jqYAiFRCizJFj37SuUrvYCdB_T1BLN6Zzh-8c6X4InRM8JJiSG6mCXJlhXlJGCT1AfZJzHmdU0MP9zXkPnYSwxDhhFItj1OuCZwLzPnqdbLR3c7DxrbMa9HX0BGohrVGyrjfRW-OdnUfP0rrKlOBD9GWaRTRrrSxriEa2Me7baGmbaKQa82mazSk6qmQd4GyXA_R-fzcbT-Lpy8PjeDSNJWO4iaHijJWJSrIq57rSwIBDyYjGotSJ1CzTWglIU56nUHb_4AyyJE9VnqdYSMoG6HK7u_buo4XQFCsTFNS1tODaUFAmOBGUCtKhwy2qvAvBQ1WsvVlJvykILn41FluNxU5jV7jYbbflCvQe__PWAVdboCsWS9d6273639oPpFl9bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354152251</pqid></control><display><type>article</type><title>Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Gaikwad, Adwait ; Hlushko, Hanna ; Karimineghlani, Parvin ; Selin, Victor ; Sukhishvili, Svetlana A</creator><creatorcontrib>Gaikwad, Adwait ; Hlushko, Hanna ; Karimineghlani, Parvin ; Selin, Victor ; Sukhishvili, Svetlana A</creatorcontrib><description>We report on mechanically strong, water-insoluble hydrogen-bonded nanofiber mats composed of a hydrophilic polymer and a natural polyphenol that exhibit prolonged antioxidant activity. The high performance of fibrous mats resulted from the formation of a network of hydrogen bonds between a low-molecular-weight polyphenol (tannic acid, TA) and a water-soluble polymer (polyvinylpyrrolidone, PVP) and could be precisely controlled by the TA-to-PVP ratio. Dramatic enhancement (5- to 10-fold) in tensile strength, toughness, and Young’s moduli of the PVP/TA fiber mats (as compared to those of pristine PVP fibers) was achieved at the maximum density of hydrogen bonds, which occurred at ∼0.2–0.4 molar fractions of TA. The formation of hydrogen bonds was confirmed by an increase in the glass-transition temperature of the polymer after binding with TA. When exposed to water, the fibers exhibited composition- and pH-dependent stabilities, with the TA-enriched fibers fully preserving their integrity in acidic and neutral media. Importantly, the fiber mats exhibited strong antioxidant activity with dual (burst and prolonged) activity profiles, which could be controlled via fiber composition, a feature useful for controlling radical-scavenging rates in environmental and biological applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b23212</identifier><identifier>PMID: 32048504</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2020-03, Vol.12 (9), p.11026-11035</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23</citedby><cites>FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23</cites><orcidid>0000-0003-4803-2303 ; 0000-0002-2328-4494 ; 0000-0001-7923-144X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32048504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaikwad, Adwait</creatorcontrib><creatorcontrib>Hlushko, Hanna</creatorcontrib><creatorcontrib>Karimineghlani, Parvin</creatorcontrib><creatorcontrib>Selin, Victor</creatorcontrib><creatorcontrib>Sukhishvili, Svetlana A</creatorcontrib><title>Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We report on mechanically strong, water-insoluble hydrogen-bonded nanofiber mats composed of a hydrophilic polymer and a natural polyphenol that exhibit prolonged antioxidant activity. The high performance of fibrous mats resulted from the formation of a network of hydrogen bonds between a low-molecular-weight polyphenol (tannic acid, TA) and a water-soluble polymer (polyvinylpyrrolidone, PVP) and could be precisely controlled by the TA-to-PVP ratio. Dramatic enhancement (5- to 10-fold) in tensile strength, toughness, and Young’s moduli of the PVP/TA fiber mats (as compared to those of pristine PVP fibers) was achieved at the maximum density of hydrogen bonds, which occurred at ∼0.2–0.4 molar fractions of TA. The formation of hydrogen bonds was confirmed by an increase in the glass-transition temperature of the polymer after binding with TA. When exposed to water, the fibers exhibited composition- and pH-dependent stabilities, with the TA-enriched fibers fully preserving their integrity in acidic and neutral media. Importantly, the fiber mats exhibited strong antioxidant activity with dual (burst and prolonged) activity profiles, which could be controlled via fiber composition, a feature useful for controlling radical-scavenging rates in environmental and biological applications.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqWwMqKMCJHiZx5jqYAiFRCizJFj37SuUrvYCdB_T1BLN6Zzh-8c6X4InRM8JJiSG6mCXJlhXlJGCT1AfZJzHmdU0MP9zXkPnYSwxDhhFItj1OuCZwLzPnqdbLR3c7DxrbMa9HX0BGohrVGyrjfRW-OdnUfP0rrKlOBD9GWaRTRrrSxriEa2Me7baGmbaKQa82mazSk6qmQd4GyXA_R-fzcbT-Lpy8PjeDSNJWO4iaHijJWJSrIq57rSwIBDyYjGotSJ1CzTWglIU56nUHb_4AyyJE9VnqdYSMoG6HK7u_buo4XQFCsTFNS1tODaUFAmOBGUCtKhwy2qvAvBQ1WsvVlJvykILn41FluNxU5jV7jYbbflCvQe__PWAVdboCsWS9d6273639oPpFl9bw</recordid><startdate>20200304</startdate><enddate>20200304</enddate><creator>Gaikwad, Adwait</creator><creator>Hlushko, Hanna</creator><creator>Karimineghlani, Parvin</creator><creator>Selin, Victor</creator><creator>Sukhishvili, Svetlana A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4803-2303</orcidid><orcidid>https://orcid.org/0000-0002-2328-4494</orcidid><orcidid>https://orcid.org/0000-0001-7923-144X</orcidid></search><sort><creationdate>20200304</creationdate><title>Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity</title><author>Gaikwad, Adwait ; Hlushko, Hanna ; Karimineghlani, Parvin ; Selin, Victor ; Sukhishvili, Svetlana A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaikwad, Adwait</creatorcontrib><creatorcontrib>Hlushko, Hanna</creatorcontrib><creatorcontrib>Karimineghlani, Parvin</creatorcontrib><creatorcontrib>Selin, Victor</creatorcontrib><creatorcontrib>Sukhishvili, Svetlana A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaikwad, Adwait</au><au>Hlushko, Hanna</au><au>Karimineghlani, Parvin</au><au>Selin, Victor</au><au>Sukhishvili, Svetlana A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-03-04</date><risdate>2020</risdate><volume>12</volume><issue>9</issue><spage>11026</spage><epage>11035</epage><pages>11026-11035</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We report on mechanically strong, water-insoluble hydrogen-bonded nanofiber mats composed of a hydrophilic polymer and a natural polyphenol that exhibit prolonged antioxidant activity. The high performance of fibrous mats resulted from the formation of a network of hydrogen bonds between a low-molecular-weight polyphenol (tannic acid, TA) and a water-soluble polymer (polyvinylpyrrolidone, PVP) and could be precisely controlled by the TA-to-PVP ratio. Dramatic enhancement (5- to 10-fold) in tensile strength, toughness, and Young’s moduli of the PVP/TA fiber mats (as compared to those of pristine PVP fibers) was achieved at the maximum density of hydrogen bonds, which occurred at ∼0.2–0.4 molar fractions of TA. The formation of hydrogen bonds was confirmed by an increase in the glass-transition temperature of the polymer after binding with TA. When exposed to water, the fibers exhibited composition- and pH-dependent stabilities, with the TA-enriched fibers fully preserving their integrity in acidic and neutral media. Importantly, the fiber mats exhibited strong antioxidant activity with dual (burst and prolonged) activity profiles, which could be controlled via fiber composition, a feature useful for controlling radical-scavenging rates in environmental and biological applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32048504</pmid><doi>10.1021/acsami.9b23212</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4803-2303</orcidid><orcidid>https://orcid.org/0000-0002-2328-4494</orcidid><orcidid>https://orcid.org/0000-0001-7923-144X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-03, Vol.12 (9), p.11026-11035
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2354152251
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen-Bonded,%20Mechanically%20Strong%20Nanofibers%20with%20Tunable%20Antioxidant%20Activity&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Gaikwad,%20Adwait&rft.date=2020-03-04&rft.volume=12&rft.issue=9&rft.spage=11026&rft.epage=11035&rft.pages=11026-11035&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b23212&rft_dat=%3Cproquest_cross%3E2354152251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354152251&rft_id=info:pmid/32048504&rfr_iscdi=true