Loading…
Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity
We report on mechanically strong, water-insoluble hydrogen-bonded nanofiber mats composed of a hydrophilic polymer and a natural polyphenol that exhibit prolonged antioxidant activity. The high performance of fibrous mats resulted from the formation of a network of hydrogen bonds between a low-molec...
Saved in:
Published in: | ACS applied materials & interfaces 2020-03, Vol.12 (9), p.11026-11035 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23 |
---|---|
cites | cdi_FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23 |
container_end_page | 11035 |
container_issue | 9 |
container_start_page | 11026 |
container_title | ACS applied materials & interfaces |
container_volume | 12 |
creator | Gaikwad, Adwait Hlushko, Hanna Karimineghlani, Parvin Selin, Victor Sukhishvili, Svetlana A |
description | We report on mechanically strong, water-insoluble hydrogen-bonded nanofiber mats composed of a hydrophilic polymer and a natural polyphenol that exhibit prolonged antioxidant activity. The high performance of fibrous mats resulted from the formation of a network of hydrogen bonds between a low-molecular-weight polyphenol (tannic acid, TA) and a water-soluble polymer (polyvinylpyrrolidone, PVP) and could be precisely controlled by the TA-to-PVP ratio. Dramatic enhancement (5- to 10-fold) in tensile strength, toughness, and Young’s moduli of the PVP/TA fiber mats (as compared to those of pristine PVP fibers) was achieved at the maximum density of hydrogen bonds, which occurred at ∼0.2–0.4 molar fractions of TA. The formation of hydrogen bonds was confirmed by an increase in the glass-transition temperature of the polymer after binding with TA. When exposed to water, the fibers exhibited composition- and pH-dependent stabilities, with the TA-enriched fibers fully preserving their integrity in acidic and neutral media. Importantly, the fiber mats exhibited strong antioxidant activity with dual (burst and prolonged) activity profiles, which could be controlled via fiber composition, a feature useful for controlling radical-scavenging rates in environmental and biological applications. |
doi_str_mv | 10.1021/acsami.9b23212 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2354152251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354152251</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqWwMqKMCJHiZx5jqYAiFRCizJFj37SuUrvYCdB_T1BLN6Zzh-8c6X4InRM8JJiSG6mCXJlhXlJGCT1AfZJzHmdU0MP9zXkPnYSwxDhhFItj1OuCZwLzPnqdbLR3c7DxrbMa9HX0BGohrVGyrjfRW-OdnUfP0rrKlOBD9GWaRTRrrSxriEa2Me7baGmbaKQa82mazSk6qmQd4GyXA_R-fzcbT-Lpy8PjeDSNJWO4iaHijJWJSrIq57rSwIBDyYjGotSJ1CzTWglIU56nUHb_4AyyJE9VnqdYSMoG6HK7u_buo4XQFCsTFNS1tODaUFAmOBGUCtKhwy2qvAvBQ1WsvVlJvykILn41FluNxU5jV7jYbbflCvQe__PWAVdboCsWS9d6273639oPpFl9bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2354152251</pqid></control><display><type>article</type><title>Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Gaikwad, Adwait ; Hlushko, Hanna ; Karimineghlani, Parvin ; Selin, Victor ; Sukhishvili, Svetlana A</creator><creatorcontrib>Gaikwad, Adwait ; Hlushko, Hanna ; Karimineghlani, Parvin ; Selin, Victor ; Sukhishvili, Svetlana A</creatorcontrib><description>We report on mechanically strong, water-insoluble hydrogen-bonded nanofiber mats composed of a hydrophilic polymer and a natural polyphenol that exhibit prolonged antioxidant activity. The high performance of fibrous mats resulted from the formation of a network of hydrogen bonds between a low-molecular-weight polyphenol (tannic acid, TA) and a water-soluble polymer (polyvinylpyrrolidone, PVP) and could be precisely controlled by the TA-to-PVP ratio. Dramatic enhancement (5- to 10-fold) in tensile strength, toughness, and Young’s moduli of the PVP/TA fiber mats (as compared to those of pristine PVP fibers) was achieved at the maximum density of hydrogen bonds, which occurred at ∼0.2–0.4 molar fractions of TA. The formation of hydrogen bonds was confirmed by an increase in the glass-transition temperature of the polymer after binding with TA. When exposed to water, the fibers exhibited composition- and pH-dependent stabilities, with the TA-enriched fibers fully preserving their integrity in acidic and neutral media. Importantly, the fiber mats exhibited strong antioxidant activity with dual (burst and prolonged) activity profiles, which could be controlled via fiber composition, a feature useful for controlling radical-scavenging rates in environmental and biological applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b23212</identifier><identifier>PMID: 32048504</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2020-03, Vol.12 (9), p.11026-11035</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23</citedby><cites>FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23</cites><orcidid>0000-0003-4803-2303 ; 0000-0002-2328-4494 ; 0000-0001-7923-144X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32048504$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaikwad, Adwait</creatorcontrib><creatorcontrib>Hlushko, Hanna</creatorcontrib><creatorcontrib>Karimineghlani, Parvin</creatorcontrib><creatorcontrib>Selin, Victor</creatorcontrib><creatorcontrib>Sukhishvili, Svetlana A</creatorcontrib><title>Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We report on mechanically strong, water-insoluble hydrogen-bonded nanofiber mats composed of a hydrophilic polymer and a natural polyphenol that exhibit prolonged antioxidant activity. The high performance of fibrous mats resulted from the formation of a network of hydrogen bonds between a low-molecular-weight polyphenol (tannic acid, TA) and a water-soluble polymer (polyvinylpyrrolidone, PVP) and could be precisely controlled by the TA-to-PVP ratio. Dramatic enhancement (5- to 10-fold) in tensile strength, toughness, and Young’s moduli of the PVP/TA fiber mats (as compared to those of pristine PVP fibers) was achieved at the maximum density of hydrogen bonds, which occurred at ∼0.2–0.4 molar fractions of TA. The formation of hydrogen bonds was confirmed by an increase in the glass-transition temperature of the polymer after binding with TA. When exposed to water, the fibers exhibited composition- and pH-dependent stabilities, with the TA-enriched fibers fully preserving their integrity in acidic and neutral media. Importantly, the fiber mats exhibited strong antioxidant activity with dual (burst and prolonged) activity profiles, which could be controlled via fiber composition, a feature useful for controlling radical-scavenging rates in environmental and biological applications.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqWwMqKMCJHiZx5jqYAiFRCizJFj37SuUrvYCdB_T1BLN6Zzh-8c6X4InRM8JJiSG6mCXJlhXlJGCT1AfZJzHmdU0MP9zXkPnYSwxDhhFItj1OuCZwLzPnqdbLR3c7DxrbMa9HX0BGohrVGyrjfRW-OdnUfP0rrKlOBD9GWaRTRrrSxriEa2Me7baGmbaKQa82mazSk6qmQd4GyXA_R-fzcbT-Lpy8PjeDSNJWO4iaHijJWJSrIq57rSwIBDyYjGotSJ1CzTWglIU56nUHb_4AyyJE9VnqdYSMoG6HK7u_buo4XQFCsTFNS1tODaUFAmOBGUCtKhwy2qvAvBQ1WsvVlJvykILn41FluNxU5jV7jYbbflCvQe__PWAVdboCsWS9d6273639oPpFl9bw</recordid><startdate>20200304</startdate><enddate>20200304</enddate><creator>Gaikwad, Adwait</creator><creator>Hlushko, Hanna</creator><creator>Karimineghlani, Parvin</creator><creator>Selin, Victor</creator><creator>Sukhishvili, Svetlana A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4803-2303</orcidid><orcidid>https://orcid.org/0000-0002-2328-4494</orcidid><orcidid>https://orcid.org/0000-0001-7923-144X</orcidid></search><sort><creationdate>20200304</creationdate><title>Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity</title><author>Gaikwad, Adwait ; Hlushko, Hanna ; Karimineghlani, Parvin ; Selin, Victor ; Sukhishvili, Svetlana A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaikwad, Adwait</creatorcontrib><creatorcontrib>Hlushko, Hanna</creatorcontrib><creatorcontrib>Karimineghlani, Parvin</creatorcontrib><creatorcontrib>Selin, Victor</creatorcontrib><creatorcontrib>Sukhishvili, Svetlana A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaikwad, Adwait</au><au>Hlushko, Hanna</au><au>Karimineghlani, Parvin</au><au>Selin, Victor</au><au>Sukhishvili, Svetlana A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-03-04</date><risdate>2020</risdate><volume>12</volume><issue>9</issue><spage>11026</spage><epage>11035</epage><pages>11026-11035</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We report on mechanically strong, water-insoluble hydrogen-bonded nanofiber mats composed of a hydrophilic polymer and a natural polyphenol that exhibit prolonged antioxidant activity. The high performance of fibrous mats resulted from the formation of a network of hydrogen bonds between a low-molecular-weight polyphenol (tannic acid, TA) and a water-soluble polymer (polyvinylpyrrolidone, PVP) and could be precisely controlled by the TA-to-PVP ratio. Dramatic enhancement (5- to 10-fold) in tensile strength, toughness, and Young’s moduli of the PVP/TA fiber mats (as compared to those of pristine PVP fibers) was achieved at the maximum density of hydrogen bonds, which occurred at ∼0.2–0.4 molar fractions of TA. The formation of hydrogen bonds was confirmed by an increase in the glass-transition temperature of the polymer after binding with TA. When exposed to water, the fibers exhibited composition- and pH-dependent stabilities, with the TA-enriched fibers fully preserving their integrity in acidic and neutral media. Importantly, the fiber mats exhibited strong antioxidant activity with dual (burst and prolonged) activity profiles, which could be controlled via fiber composition, a feature useful for controlling radical-scavenging rates in environmental and biological applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32048504</pmid><doi>10.1021/acsami.9b23212</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4803-2303</orcidid><orcidid>https://orcid.org/0000-0002-2328-4494</orcidid><orcidid>https://orcid.org/0000-0001-7923-144X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2020-03, Vol.12 (9), p.11026-11035 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2354152251 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Hydrogen-Bonded, Mechanically Strong Nanofibers with Tunable Antioxidant Activity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A32%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen-Bonded,%20Mechanically%20Strong%20Nanofibers%20with%20Tunable%20Antioxidant%20Activity&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Gaikwad,%20Adwait&rft.date=2020-03-04&rft.volume=12&rft.issue=9&rft.spage=11026&rft.epage=11035&rft.pages=11026-11035&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b23212&rft_dat=%3Cproquest_cross%3E2354152251%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-ef433b6c68f94dfde3e4eb31d05bd6ad38ddc5e77497eb25208e8697c99705a23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2354152251&rft_id=info:pmid/32048504&rfr_iscdi=true |