Loading…
Sulfur Deficiency-Induced Glucosinolate Catabolism Attributed to Two β-Glucosidases, BGLU28 and BGLU30, is Required for Plant Growth Maintenance under Sulfur Deficiency
Abstract Sulfur (S) is an essential element for plants, and S deficiency causes severe growth retardation. Although the catabolic process of glucosinolates (GSLs), the major S-containing metabolites specific to Brassicales including Arabidopsis, has been recognized as one of the S deficiency (−S) re...
Saved in:
Published in: | Plant and cell physiology 2020-04, Vol.61 (4), p.803-813 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Sulfur (S) is an essential element for plants, and S deficiency causes severe growth retardation. Although the catabolic process of glucosinolates (GSLs), the major S-containing metabolites specific to Brassicales including Arabidopsis, has been recognized as one of the S deficiency (−S) responses in plants, the physiological function of this metabolic process is not clear. Two β-glucosidases (BGLUs), BGLU28 and BGLU30, are assumed to be responsible for this catabolic process as their transcript levels were highly upregulated by −S. To clarify the physiological function of BGLU28 and BGLU30 and their roles in GSL catabolism, we analyzed the accumulation of GSLs and other S-containing compounds in the single and double mutant lines of BGLU28 and BGLU30 and in wild-type plants under different S conditions. GSL levels were highly increased, while the levels of sulfate, cysteine, glutathione and protein were decreased in the double mutant line of BGLU28 and BGLU30 (bglu28/30) under −S. Furthermore, transcript level of Sulfate Transporter1;2, the main contributor of sulfate uptake from the environment, was increased in bglu28/30 mutants under −S. With these metabolic and transcriptional changes, bglu28/30 mutants displayed obvious growth retardation under −S. Overall, our results indicate that BGLU28 and BGLU30 are required for −S-induced GSL catabolism and contribute to sustained plant growth under −S by recycling sulfate to primary S metabolism. |
---|---|
ISSN: | 0032-0781 1471-9053 |
DOI: | 10.1093/pcp/pcaa006 |