Loading…
Stable Lithium Deposition Enabled by an Acid-Treated g‑C3N4 Interface Layer for a Lithium Metal Anode
Li metal has been regarded as one of the most promising anode candidates for high-energy rechargeable lithium batteries. Nevertheless, the practical applications of the Li anode have been hampered because of its low Coulombic efficiency and safety hazards. Here, acid-treated g-C3N4 with O- and N-con...
Saved in:
Published in: | ACS applied materials & interfaces 2020-03, Vol.12 (9), p.11265-11272 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Li metal has been regarded as one of the most promising anode candidates for high-energy rechargeable lithium batteries. Nevertheless, the practical applications of the Li anode have been hampered because of its low Coulombic efficiency and safety hazards. Here, acid-treated g-C3N4 with O- and N-containing groups are coated on Li foil through a facile physical pressing method. The O- and N-containing groups cooperate to rearrange the concentration of Li ions and enhance the Li ion transfer. Hence, the cycle and rate performances of acid-treated g-C3N4-coated Li electrodes are greatly improved in symmetric cells, which show cycling stability over 400 h at 1 mA cm–2 in ester-based electrolytes and over 2100 h in ether-based electrolytes. As for the Li//LiFePO4 full cells, there is a high capacity retention of 80% over 400 cycles at 1 C. The full cells of Li//S in ether-based electrolytes also exhibit a capacity of 520 mA h g–1 after 400 cycles at 1 C. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b23520 |