Loading…

Effect of dissolved oxygen on l-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method

l -Methionine is an essential amino acid in humans, which plays an important role in the synthesis of some important amino acids and proteins. In this work, metabolic flux of batch fermentation of l -methionine with recombinant Escherichia coli W3110BL was analyzed using the flux balance analysis me...

Full description

Saved in:
Bibliographic Details
Published in:Journal of industrial microbiology & biotechnology 2020-03, Vol.47 (3), p.287-297
Main Authors: Niu, Kun, Xu, Yue-Ying, Wu, Wang-Jie, Zhou, Hai-Yan, Liu, Zhi-Qiang, Zheng, Yu-Guo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513
cites cdi_FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513
container_end_page 297
container_issue 3
container_start_page 287
container_title Journal of industrial microbiology & biotechnology
container_volume 47
creator Niu, Kun
Xu, Yue-Ying
Wu, Wang-Jie
Zhou, Hai-Yan
Liu, Zhi-Qiang
Zheng, Yu-Guo
description l -Methionine is an essential amino acid in humans, which plays an important role in the synthesis of some important amino acids and proteins. In this work, metabolic flux of batch fermentation of l -methionine with recombinant Escherichia coli W3110BL was analyzed using the flux balance analysis method, which estimated the intracellular flux distributions under different dissolved oxygen conditions. The results revealed the producing l -methionine flux of 4.8 mmol/(g cell·h) [based on the glycerol uptake flux of 100 mmol/(g cell·h)] was obtained at 30% dissolved oxygen level which was higher than that of other dissolved oxygen levels. The carbon fluxes for synthesizing l -methionine were mainly obtained from the pathway of phosphoenolpyruvate to oxaloacetic acid [15.6 mmol/(g cell·h)] but not from the TCA cycle. Hence, increasing the flow from phosphoenolpyruvate to oxaloacetic acid by enhancing the enzyme activity of phosphoenolpyruvate carboxylase might be conducive to the production of l -methionine. Additionally, pentose phosphate pathway could provide a large amount of reducing power NADPH for the synthesis of amino acids and the flux could increase from 41 mmol/(g cell·h) to 51 mmol/(g cell·h) when changing the dissolved oxygen levels, thus meeting the requirement of NADPH for l -methionine production and biomass synthesis. Therefore, the following modification of the strains should based on the improvement of the key pathway and the NAD(P)/NAD(P)H metabolism.
doi_str_mv 10.1007/s10295-020-02264-w
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2354734904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354734904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513</originalsourceid><addsrcrecordid>eNp9kU9vFCEYh4mpsbX6BXowJL30MsrfYedYm62abOJF45Ew8LJLwwwtzLSdux9c1m018eCBAC_P-wPyIHRGyXtKiPpQKGGdbAgjdbBWNA8v0AkVqm2k5PKornmrGim4PEavS7khhEil2Ct0zBmRjHFygn6uvQc74eSxC6WkeA8Op8dlCyNOI47NANMupDGMgG9zcrOd6g77nAa8jYuFnCLuF7wudgc52F0w2KYY8A9OKfm4wXMJ4xbXFNPXssU-zo_YjCYuJZR9fZfcG_TSm1jg7dN8ir5fr79dfW42Xz99ubrcNFbIdmpYZ7uVZc6oHkznLTFcmh6skUR40bbAqHDCKGJUKz30AmRHV71btQ6kl5SfootDbv3J3Qxl0kMoFmI0I6S5aMalUFx0RFT0_B_0Js25PntPrbjijCpWKXagbE6lZPD6NofB5EVToveO9MGRro70b0f6oTa9e4qe-wHcn5ZnKRXgB6DUo3EL-e_d_4n9BVEcnpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383732172</pqid></control><display><type>article</type><title>Effect of dissolved oxygen on l-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method</title><source>ABI/INFORM global</source><source>Open Access: Oxford University Press Open Journals</source><creator>Niu, Kun ; Xu, Yue-Ying ; Wu, Wang-Jie ; Zhou, Hai-Yan ; Liu, Zhi-Qiang ; Zheng, Yu-Guo</creator><creatorcontrib>Niu, Kun ; Xu, Yue-Ying ; Wu, Wang-Jie ; Zhou, Hai-Yan ; Liu, Zhi-Qiang ; Zheng, Yu-Guo</creatorcontrib><description>l -Methionine is an essential amino acid in humans, which plays an important role in the synthesis of some important amino acids and proteins. In this work, metabolic flux of batch fermentation of l -methionine with recombinant Escherichia coli W3110BL was analyzed using the flux balance analysis method, which estimated the intracellular flux distributions under different dissolved oxygen conditions. The results revealed the producing l -methionine flux of 4.8 mmol/(g cell·h) [based on the glycerol uptake flux of 100 mmol/(g cell·h)] was obtained at 30% dissolved oxygen level which was higher than that of other dissolved oxygen levels. The carbon fluxes for synthesizing l -methionine were mainly obtained from the pathway of phosphoenolpyruvate to oxaloacetic acid [15.6 mmol/(g cell·h)] but not from the TCA cycle. Hence, increasing the flow from phosphoenolpyruvate to oxaloacetic acid by enhancing the enzyme activity of phosphoenolpyruvate carboxylase might be conducive to the production of l -methionine. Additionally, pentose phosphate pathway could provide a large amount of reducing power NADPH for the synthesis of amino acids and the flux could increase from 41 mmol/(g cell·h) to 51 mmol/(g cell·h) when changing the dissolved oxygen levels, thus meeting the requirement of NADPH for l -methionine production and biomass synthesis. Therefore, the following modification of the strains should based on the improvement of the key pathway and the NAD(P)/NAD(P)H metabolism.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-020-02264-w</identifier><identifier>PMID: 32052230</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Amino acids ; Biochemistry ; Bioinformatics ; Biomedical and Life Sciences ; Biotechnology ; Cell Culture and Bioengineering - Original Paper ; Dissolved oxygen ; E coli ; Enzymatic activity ; Enzyme activity ; Escherichia coli ; Fermentation ; Fluctuations ; Fluxes ; Genetic Engineering ; Glycerol ; Inorganic Chemistry ; Levels ; Life Sciences ; Metabolic flux ; Metabolism ; Methionine ; Microbiology ; NAD ; NADP ; Oxaloacetic acid ; Oxygen ; Pentose ; Pentose phosphate pathway ; Phosphoenolpyruvate carboxylase ; Synthesis ; Tricarboxylic acid cycle</subject><ispartof>Journal of industrial microbiology &amp; biotechnology, 2020-03, Vol.47 (3), p.287-297</ispartof><rights>Society for Industrial Microbiology and Biotechnology 2020</rights><rights>Journal of Industrial Microbiology and Biotechnology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513</citedby><cites>FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513</cites><orcidid>0000-0003-3259-6796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2383732172/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2383732172?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32052230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Kun</creatorcontrib><creatorcontrib>Xu, Yue-Ying</creatorcontrib><creatorcontrib>Wu, Wang-Jie</creatorcontrib><creatorcontrib>Zhou, Hai-Yan</creatorcontrib><creatorcontrib>Liu, Zhi-Qiang</creatorcontrib><creatorcontrib>Zheng, Yu-Guo</creatorcontrib><title>Effect of dissolved oxygen on l-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method</title><title>Journal of industrial microbiology &amp; biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>l -Methionine is an essential amino acid in humans, which plays an important role in the synthesis of some important amino acids and proteins. In this work, metabolic flux of batch fermentation of l -methionine with recombinant Escherichia coli W3110BL was analyzed using the flux balance analysis method, which estimated the intracellular flux distributions under different dissolved oxygen conditions. The results revealed the producing l -methionine flux of 4.8 mmol/(g cell·h) [based on the glycerol uptake flux of 100 mmol/(g cell·h)] was obtained at 30% dissolved oxygen level which was higher than that of other dissolved oxygen levels. The carbon fluxes for synthesizing l -methionine were mainly obtained from the pathway of phosphoenolpyruvate to oxaloacetic acid [15.6 mmol/(g cell·h)] but not from the TCA cycle. Hence, increasing the flow from phosphoenolpyruvate to oxaloacetic acid by enhancing the enzyme activity of phosphoenolpyruvate carboxylase might be conducive to the production of l -methionine. Additionally, pentose phosphate pathway could provide a large amount of reducing power NADPH for the synthesis of amino acids and the flux could increase from 41 mmol/(g cell·h) to 51 mmol/(g cell·h) when changing the dissolved oxygen levels, thus meeting the requirement of NADPH for l -methionine production and biomass synthesis. Therefore, the following modification of the strains should based on the improvement of the key pathway and the NAD(P)/NAD(P)H metabolism.</description><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Culture and Bioengineering - Original Paper</subject><subject>Dissolved oxygen</subject><subject>E coli</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Escherichia coli</subject><subject>Fermentation</subject><subject>Fluctuations</subject><subject>Fluxes</subject><subject>Genetic Engineering</subject><subject>Glycerol</subject><subject>Inorganic Chemistry</subject><subject>Levels</subject><subject>Life Sciences</subject><subject>Metabolic flux</subject><subject>Metabolism</subject><subject>Methionine</subject><subject>Microbiology</subject><subject>NAD</subject><subject>NADP</subject><subject>Oxaloacetic acid</subject><subject>Oxygen</subject><subject>Pentose</subject><subject>Pentose phosphate pathway</subject><subject>Phosphoenolpyruvate carboxylase</subject><subject>Synthesis</subject><subject>Tricarboxylic acid cycle</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU9vFCEYh4mpsbX6BXowJL30MsrfYedYm62abOJF45Ew8LJLwwwtzLSdux9c1m018eCBAC_P-wPyIHRGyXtKiPpQKGGdbAgjdbBWNA8v0AkVqm2k5PKornmrGim4PEavS7khhEil2Ct0zBmRjHFygn6uvQc74eSxC6WkeA8Op8dlCyNOI47NANMupDGMgG9zcrOd6g77nAa8jYuFnCLuF7wudgc52F0w2KYY8A9OKfm4wXMJ4xbXFNPXssU-zo_YjCYuJZR9fZfcG_TSm1jg7dN8ir5fr79dfW42Xz99ubrcNFbIdmpYZ7uVZc6oHkznLTFcmh6skUR40bbAqHDCKGJUKz30AmRHV71btQ6kl5SfootDbv3J3Qxl0kMoFmI0I6S5aMalUFx0RFT0_B_0Js25PntPrbjijCpWKXagbE6lZPD6NofB5EVToveO9MGRro70b0f6oTa9e4qe-wHcn5ZnKRXgB6DUo3EL-e_d_4n9BVEcnpU</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Niu, Kun</creator><creator>Xu, Yue-Ying</creator><creator>Wu, Wang-Jie</creator><creator>Zhou, Hai-Yan</creator><creator>Liu, Zhi-Qiang</creator><creator>Zheng, Yu-Guo</creator><general>Springer International Publishing</general><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3259-6796</orcidid></search><sort><creationdate>20200301</creationdate><title>Effect of dissolved oxygen on l-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method</title><author>Niu, Kun ; Xu, Yue-Ying ; Wu, Wang-Jie ; Zhou, Hai-Yan ; Liu, Zhi-Qiang ; Zheng, Yu-Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Culture and Bioengineering - Original Paper</topic><topic>Dissolved oxygen</topic><topic>E coli</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Escherichia coli</topic><topic>Fermentation</topic><topic>Fluctuations</topic><topic>Fluxes</topic><topic>Genetic Engineering</topic><topic>Glycerol</topic><topic>Inorganic Chemistry</topic><topic>Levels</topic><topic>Life Sciences</topic><topic>Metabolic flux</topic><topic>Metabolism</topic><topic>Methionine</topic><topic>Microbiology</topic><topic>NAD</topic><topic>NADP</topic><topic>Oxaloacetic acid</topic><topic>Oxygen</topic><topic>Pentose</topic><topic>Pentose phosphate pathway</topic><topic>Phosphoenolpyruvate carboxylase</topic><topic>Synthesis</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Kun</creatorcontrib><creatorcontrib>Xu, Yue-Ying</creatorcontrib><creatorcontrib>Wu, Wang-Jie</creatorcontrib><creatorcontrib>Zhou, Hai-Yan</creatorcontrib><creatorcontrib>Liu, Zhi-Qiang</creatorcontrib><creatorcontrib>Zheng, Yu-Guo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Kun</au><au>Xu, Yue-Ying</au><au>Wu, Wang-Jie</au><au>Zhou, Hai-Yan</au><au>Liu, Zhi-Qiang</au><au>Zheng, Yu-Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of dissolved oxygen on l-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method</atitle><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>47</volume><issue>3</issue><spage>287</spage><epage>297</epage><pages>287-297</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>l -Methionine is an essential amino acid in humans, which plays an important role in the synthesis of some important amino acids and proteins. In this work, metabolic flux of batch fermentation of l -methionine with recombinant Escherichia coli W3110BL was analyzed using the flux balance analysis method, which estimated the intracellular flux distributions under different dissolved oxygen conditions. The results revealed the producing l -methionine flux of 4.8 mmol/(g cell·h) [based on the glycerol uptake flux of 100 mmol/(g cell·h)] was obtained at 30% dissolved oxygen level which was higher than that of other dissolved oxygen levels. The carbon fluxes for synthesizing l -methionine were mainly obtained from the pathway of phosphoenolpyruvate to oxaloacetic acid [15.6 mmol/(g cell·h)] but not from the TCA cycle. Hence, increasing the flow from phosphoenolpyruvate to oxaloacetic acid by enhancing the enzyme activity of phosphoenolpyruvate carboxylase might be conducive to the production of l -methionine. Additionally, pentose phosphate pathway could provide a large amount of reducing power NADPH for the synthesis of amino acids and the flux could increase from 41 mmol/(g cell·h) to 51 mmol/(g cell·h) when changing the dissolved oxygen levels, thus meeting the requirement of NADPH for l -methionine production and biomass synthesis. Therefore, the following modification of the strains should based on the improvement of the key pathway and the NAD(P)/NAD(P)H metabolism.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32052230</pmid><doi>10.1007/s10295-020-02264-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3259-6796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-5435
ispartof Journal of industrial microbiology & biotechnology, 2020-03, Vol.47 (3), p.287-297
issn 1367-5435
1476-5535
language eng
recordid cdi_proquest_miscellaneous_2354734904
source ABI/INFORM global; Open Access: Oxford University Press Open Journals
subjects Amino acids
Biochemistry
Bioinformatics
Biomedical and Life Sciences
Biotechnology
Cell Culture and Bioengineering - Original Paper
Dissolved oxygen
E coli
Enzymatic activity
Enzyme activity
Escherichia coli
Fermentation
Fluctuations
Fluxes
Genetic Engineering
Glycerol
Inorganic Chemistry
Levels
Life Sciences
Metabolic flux
Metabolism
Methionine
Microbiology
NAD
NADP
Oxaloacetic acid
Oxygen
Pentose
Pentose phosphate pathway
Phosphoenolpyruvate carboxylase
Synthesis
Tricarboxylic acid cycle
title Effect of dissolved oxygen on l-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20dissolved%20oxygen%20on%20l-methionine%20production%20from%20glycerol%20by%20Escherichia%20coli%20W3110BL%20using%20metabolic%20flux%20analysis%20method&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Niu,%20Kun&rft.date=2020-03-01&rft.volume=47&rft.issue=3&rft.spage=287&rft.epage=297&rft.pages=287-297&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-020-02264-w&rft_dat=%3Cproquest_cross%3E2354734904%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383732172&rft_id=info:pmid/32052230&rfr_iscdi=true