Loading…
Effect of dissolved oxygen on l-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method
l -Methionine is an essential amino acid in humans, which plays an important role in the synthesis of some important amino acids and proteins. In this work, metabolic flux of batch fermentation of l -methionine with recombinant Escherichia coli W3110BL was analyzed using the flux balance analysis me...
Saved in:
Published in: | Journal of industrial microbiology & biotechnology 2020-03, Vol.47 (3), p.287-297 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513 |
container_end_page | 297 |
container_issue | 3 |
container_start_page | 287 |
container_title | Journal of industrial microbiology & biotechnology |
container_volume | 47 |
creator | Niu, Kun Xu, Yue-Ying Wu, Wang-Jie Zhou, Hai-Yan Liu, Zhi-Qiang Zheng, Yu-Guo |
description | l
-Methionine is an essential amino acid in humans, which plays an important role in the synthesis of some important amino acids and proteins. In this work, metabolic flux of batch fermentation of
l
-methionine with recombinant
Escherichia coli
W3110BL was analyzed using the flux balance analysis method, which estimated the intracellular flux distributions under different dissolved oxygen conditions. The results revealed the producing
l
-methionine flux of 4.8 mmol/(g cell·h) [based on the glycerol uptake flux of 100 mmol/(g cell·h)] was obtained at 30% dissolved oxygen level which was higher than that of other dissolved oxygen levels. The carbon fluxes for synthesizing
l
-methionine were mainly obtained from the pathway of phosphoenolpyruvate to oxaloacetic acid [15.6 mmol/(g cell·h)] but not from the TCA cycle. Hence, increasing the flow from phosphoenolpyruvate to oxaloacetic acid by enhancing the enzyme activity of phosphoenolpyruvate carboxylase might be conducive to the production of
l
-methionine. Additionally, pentose phosphate pathway could provide a large amount of reducing power NADPH for the synthesis of amino acids and the flux could increase from 41 mmol/(g cell·h) to 51 mmol/(g cell·h) when changing the dissolved oxygen levels, thus meeting the requirement of NADPH for
l
-methionine production and biomass synthesis. Therefore, the following modification of the strains should based on the improvement of the key pathway and the NAD(P)/NAD(P)H metabolism. |
doi_str_mv | 10.1007/s10295-020-02264-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2354734904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2354734904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513</originalsourceid><addsrcrecordid>eNp9kU9vFCEYh4mpsbX6BXowJL30MsrfYedYm62abOJF45Ew8LJLwwwtzLSdux9c1m018eCBAC_P-wPyIHRGyXtKiPpQKGGdbAgjdbBWNA8v0AkVqm2k5PKornmrGim4PEavS7khhEil2Ct0zBmRjHFygn6uvQc74eSxC6WkeA8Op8dlCyNOI47NANMupDGMgG9zcrOd6g77nAa8jYuFnCLuF7wudgc52F0w2KYY8A9OKfm4wXMJ4xbXFNPXssU-zo_YjCYuJZR9fZfcG_TSm1jg7dN8ir5fr79dfW42Xz99ubrcNFbIdmpYZ7uVZc6oHkznLTFcmh6skUR40bbAqHDCKGJUKz30AmRHV71btQ6kl5SfootDbv3J3Qxl0kMoFmI0I6S5aMalUFx0RFT0_B_0Js25PntPrbjijCpWKXagbE6lZPD6NofB5EVToveO9MGRro70b0f6oTa9e4qe-wHcn5ZnKRXgB6DUo3EL-e_d_4n9BVEcnpU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383732172</pqid></control><display><type>article</type><title>Effect of dissolved oxygen on l-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method</title><source>ABI/INFORM global</source><source>Open Access: Oxford University Press Open Journals</source><creator>Niu, Kun ; Xu, Yue-Ying ; Wu, Wang-Jie ; Zhou, Hai-Yan ; Liu, Zhi-Qiang ; Zheng, Yu-Guo</creator><creatorcontrib>Niu, Kun ; Xu, Yue-Ying ; Wu, Wang-Jie ; Zhou, Hai-Yan ; Liu, Zhi-Qiang ; Zheng, Yu-Guo</creatorcontrib><description>l
-Methionine is an essential amino acid in humans, which plays an important role in the synthesis of some important amino acids and proteins. In this work, metabolic flux of batch fermentation of
l
-methionine with recombinant
Escherichia coli
W3110BL was analyzed using the flux balance analysis method, which estimated the intracellular flux distributions under different dissolved oxygen conditions. The results revealed the producing
l
-methionine flux of 4.8 mmol/(g cell·h) [based on the glycerol uptake flux of 100 mmol/(g cell·h)] was obtained at 30% dissolved oxygen level which was higher than that of other dissolved oxygen levels. The carbon fluxes for synthesizing
l
-methionine were mainly obtained from the pathway of phosphoenolpyruvate to oxaloacetic acid [15.6 mmol/(g cell·h)] but not from the TCA cycle. Hence, increasing the flow from phosphoenolpyruvate to oxaloacetic acid by enhancing the enzyme activity of phosphoenolpyruvate carboxylase might be conducive to the production of
l
-methionine. Additionally, pentose phosphate pathway could provide a large amount of reducing power NADPH for the synthesis of amino acids and the flux could increase from 41 mmol/(g cell·h) to 51 mmol/(g cell·h) when changing the dissolved oxygen levels, thus meeting the requirement of NADPH for
l
-methionine production and biomass synthesis. Therefore, the following modification of the strains should based on the improvement of the key pathway and the NAD(P)/NAD(P)H metabolism.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-020-02264-w</identifier><identifier>PMID: 32052230</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Amino acids ; Biochemistry ; Bioinformatics ; Biomedical and Life Sciences ; Biotechnology ; Cell Culture and Bioengineering - Original Paper ; Dissolved oxygen ; E coli ; Enzymatic activity ; Enzyme activity ; Escherichia coli ; Fermentation ; Fluctuations ; Fluxes ; Genetic Engineering ; Glycerol ; Inorganic Chemistry ; Levels ; Life Sciences ; Metabolic flux ; Metabolism ; Methionine ; Microbiology ; NAD ; NADP ; Oxaloacetic acid ; Oxygen ; Pentose ; Pentose phosphate pathway ; Phosphoenolpyruvate carboxylase ; Synthesis ; Tricarboxylic acid cycle</subject><ispartof>Journal of industrial microbiology & biotechnology, 2020-03, Vol.47 (3), p.287-297</ispartof><rights>Society for Industrial Microbiology and Biotechnology 2020</rights><rights>Journal of Industrial Microbiology and Biotechnology is a copyright of Springer, (2020). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513</citedby><cites>FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513</cites><orcidid>0000-0003-3259-6796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2383732172/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2383732172?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32052230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niu, Kun</creatorcontrib><creatorcontrib>Xu, Yue-Ying</creatorcontrib><creatorcontrib>Wu, Wang-Jie</creatorcontrib><creatorcontrib>Zhou, Hai-Yan</creatorcontrib><creatorcontrib>Liu, Zhi-Qiang</creatorcontrib><creatorcontrib>Zheng, Yu-Guo</creatorcontrib><title>Effect of dissolved oxygen on l-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method</title><title>Journal of industrial microbiology & biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>l
-Methionine is an essential amino acid in humans, which plays an important role in the synthesis of some important amino acids and proteins. In this work, metabolic flux of batch fermentation of
l
-methionine with recombinant
Escherichia coli
W3110BL was analyzed using the flux balance analysis method, which estimated the intracellular flux distributions under different dissolved oxygen conditions. The results revealed the producing
l
-methionine flux of 4.8 mmol/(g cell·h) [based on the glycerol uptake flux of 100 mmol/(g cell·h)] was obtained at 30% dissolved oxygen level which was higher than that of other dissolved oxygen levels. The carbon fluxes for synthesizing
l
-methionine were mainly obtained from the pathway of phosphoenolpyruvate to oxaloacetic acid [15.6 mmol/(g cell·h)] but not from the TCA cycle. Hence, increasing the flow from phosphoenolpyruvate to oxaloacetic acid by enhancing the enzyme activity of phosphoenolpyruvate carboxylase might be conducive to the production of
l
-methionine. Additionally, pentose phosphate pathway could provide a large amount of reducing power NADPH for the synthesis of amino acids and the flux could increase from 41 mmol/(g cell·h) to 51 mmol/(g cell·h) when changing the dissolved oxygen levels, thus meeting the requirement of NADPH for
l
-methionine production and biomass synthesis. Therefore, the following modification of the strains should based on the improvement of the key pathway and the NAD(P)/NAD(P)H metabolism.</description><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Culture and Bioengineering - Original Paper</subject><subject>Dissolved oxygen</subject><subject>E coli</subject><subject>Enzymatic activity</subject><subject>Enzyme activity</subject><subject>Escherichia coli</subject><subject>Fermentation</subject><subject>Fluctuations</subject><subject>Fluxes</subject><subject>Genetic Engineering</subject><subject>Glycerol</subject><subject>Inorganic Chemistry</subject><subject>Levels</subject><subject>Life Sciences</subject><subject>Metabolic flux</subject><subject>Metabolism</subject><subject>Methionine</subject><subject>Microbiology</subject><subject>NAD</subject><subject>NADP</subject><subject>Oxaloacetic acid</subject><subject>Oxygen</subject><subject>Pentose</subject><subject>Pentose phosphate pathway</subject><subject>Phosphoenolpyruvate carboxylase</subject><subject>Synthesis</subject><subject>Tricarboxylic acid cycle</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kU9vFCEYh4mpsbX6BXowJL30MsrfYedYm62abOJF45Ew8LJLwwwtzLSdux9c1m018eCBAC_P-wPyIHRGyXtKiPpQKGGdbAgjdbBWNA8v0AkVqm2k5PKornmrGim4PEavS7khhEil2Ct0zBmRjHFygn6uvQc74eSxC6WkeA8Op8dlCyNOI47NANMupDGMgG9zcrOd6g77nAa8jYuFnCLuF7wudgc52F0w2KYY8A9OKfm4wXMJ4xbXFNPXssU-zo_YjCYuJZR9fZfcG_TSm1jg7dN8ir5fr79dfW42Xz99ubrcNFbIdmpYZ7uVZc6oHkznLTFcmh6skUR40bbAqHDCKGJUKz30AmRHV71btQ6kl5SfootDbv3J3Qxl0kMoFmI0I6S5aMalUFx0RFT0_B_0Js25PntPrbjijCpWKXagbE6lZPD6NofB5EVToveO9MGRro70b0f6oTa9e4qe-wHcn5ZnKRXgB6DUo3EL-e_d_4n9BVEcnpU</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Niu, Kun</creator><creator>Xu, Yue-Ying</creator><creator>Wu, Wang-Jie</creator><creator>Zhou, Hai-Yan</creator><creator>Liu, Zhi-Qiang</creator><creator>Zheng, Yu-Guo</creator><general>Springer International Publishing</general><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3259-6796</orcidid></search><sort><creationdate>20200301</creationdate><title>Effect of dissolved oxygen on l-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method</title><author>Niu, Kun ; Xu, Yue-Ying ; Wu, Wang-Jie ; Zhou, Hai-Yan ; Liu, Zhi-Qiang ; Zheng, Yu-Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Culture and Bioengineering - Original Paper</topic><topic>Dissolved oxygen</topic><topic>E coli</topic><topic>Enzymatic activity</topic><topic>Enzyme activity</topic><topic>Escherichia coli</topic><topic>Fermentation</topic><topic>Fluctuations</topic><topic>Fluxes</topic><topic>Genetic Engineering</topic><topic>Glycerol</topic><topic>Inorganic Chemistry</topic><topic>Levels</topic><topic>Life Sciences</topic><topic>Metabolic flux</topic><topic>Metabolism</topic><topic>Methionine</topic><topic>Microbiology</topic><topic>NAD</topic><topic>NADP</topic><topic>Oxaloacetic acid</topic><topic>Oxygen</topic><topic>Pentose</topic><topic>Pentose phosphate pathway</topic><topic>Phosphoenolpyruvate carboxylase</topic><topic>Synthesis</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Kun</creatorcontrib><creatorcontrib>Xu, Yue-Ying</creatorcontrib><creatorcontrib>Wu, Wang-Jie</creatorcontrib><creatorcontrib>Zhou, Hai-Yan</creatorcontrib><creatorcontrib>Liu, Zhi-Qiang</creatorcontrib><creatorcontrib>Zheng, Yu-Guo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of industrial microbiology & biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Kun</au><au>Xu, Yue-Ying</au><au>Wu, Wang-Jie</au><au>Zhou, Hai-Yan</au><au>Liu, Zhi-Qiang</au><au>Zheng, Yu-Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of dissolved oxygen on l-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method</atitle><jtitle>Journal of industrial microbiology & biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>47</volume><issue>3</issue><spage>287</spage><epage>297</epage><pages>287-297</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>l
-Methionine is an essential amino acid in humans, which plays an important role in the synthesis of some important amino acids and proteins. In this work, metabolic flux of batch fermentation of
l
-methionine with recombinant
Escherichia coli
W3110BL was analyzed using the flux balance analysis method, which estimated the intracellular flux distributions under different dissolved oxygen conditions. The results revealed the producing
l
-methionine flux of 4.8 mmol/(g cell·h) [based on the glycerol uptake flux of 100 mmol/(g cell·h)] was obtained at 30% dissolved oxygen level which was higher than that of other dissolved oxygen levels. The carbon fluxes for synthesizing
l
-methionine were mainly obtained from the pathway of phosphoenolpyruvate to oxaloacetic acid [15.6 mmol/(g cell·h)] but not from the TCA cycle. Hence, increasing the flow from phosphoenolpyruvate to oxaloacetic acid by enhancing the enzyme activity of phosphoenolpyruvate carboxylase might be conducive to the production of
l
-methionine. Additionally, pentose phosphate pathway could provide a large amount of reducing power NADPH for the synthesis of amino acids and the flux could increase from 41 mmol/(g cell·h) to 51 mmol/(g cell·h) when changing the dissolved oxygen levels, thus meeting the requirement of NADPH for
l
-methionine production and biomass synthesis. Therefore, the following modification of the strains should based on the improvement of the key pathway and the NAD(P)/NAD(P)H metabolism.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32052230</pmid><doi>10.1007/s10295-020-02264-w</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3259-6796</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-5435 |
ispartof | Journal of industrial microbiology & biotechnology, 2020-03, Vol.47 (3), p.287-297 |
issn | 1367-5435 1476-5535 |
language | eng |
recordid | cdi_proquest_miscellaneous_2354734904 |
source | ABI/INFORM global; Open Access: Oxford University Press Open Journals |
subjects | Amino acids Biochemistry Bioinformatics Biomedical and Life Sciences Biotechnology Cell Culture and Bioengineering - Original Paper Dissolved oxygen E coli Enzymatic activity Enzyme activity Escherichia coli Fermentation Fluctuations Fluxes Genetic Engineering Glycerol Inorganic Chemistry Levels Life Sciences Metabolic flux Metabolism Methionine Microbiology NAD NADP Oxaloacetic acid Oxygen Pentose Pentose phosphate pathway Phosphoenolpyruvate carboxylase Synthesis Tricarboxylic acid cycle |
title | Effect of dissolved oxygen on l-methionine production from glycerol by Escherichia coli W3110BL using metabolic flux analysis method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20dissolved%20oxygen%20on%20l-methionine%20production%20from%20glycerol%20by%20Escherichia%20coli%20W3110BL%20using%20metabolic%20flux%20analysis%20method&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Niu,%20Kun&rft.date=2020-03-01&rft.volume=47&rft.issue=3&rft.spage=287&rft.epage=297&rft.pages=287-297&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-020-02264-w&rft_dat=%3Cproquest_cross%3E2354734904%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-29c98c2da7bea9fc0a35abeca504f466e214d4a70a765feb4e5918bd86de5f513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2383732172&rft_id=info:pmid/32052230&rfr_iscdi=true |