Loading…
Lentiviral gene therapy and vitamin B3 treatment enable granulocytic differentiation of G6PC3-deficient induced pluripotent stem cells
Induced pluripotent stem cells (iPSCs) from patients with genetic disorders are a valuable source for in vitro disease models, which enable drug testing and validation of gene and cell therapies. We generated iPSCs from a severe congenital neutropenia (SCN) patient, who presented with a nonsense mut...
Saved in:
Published in: | Gene therapy 2020-06, Vol.27 (6), p.297-306 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c532t-9dbdaf9e4e7c5e859bcbbd84db353449bbfbe88d3c11225e91a65d9b79c7c7b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c532t-9dbdaf9e4e7c5e859bcbbd84db353449bbfbe88d3c11225e91a65d9b79c7c7b73 |
container_end_page | 306 |
container_issue | 6 |
container_start_page | 297 |
container_title | Gene therapy |
container_volume | 27 |
creator | Hoffmann, Dirk Kuehle, Johannes Lenz, Daniela Philipp, Friederike Zychlinski, Daniela Lachmann, Nico Moritz, Thomas Steinemann, Doris Morgan, Michael Skokowa, Julia Klein, Christoph Schambach, Axel |
description | Induced pluripotent stem cells (iPSCs) from patients with genetic disorders are a valuable source for in vitro disease models, which enable drug testing and validation of gene and cell therapies. We generated iPSCs from a severe congenital neutropenia (SCN) patient, who presented with a nonsense mutation in the glucose-6-phosphatase catalytic subunit 3 (
G6PC3
) gene causing profound defects in granulopoiesis, associated with increased susceptibility of neutrophils to apoptosis. Generated SCN iPSC clones exhibited the capacity to differentiate into hematopoietic cells of the myeloid lineage and we identified two cytokine conditions, i.e., using granulocyte-colony stimulating factor or granulocyte-macrophage colony stimulating factor in combination with interleukin-3, to model the SCN phenotype in vitro. Reduced numbers of granulocytes were produced by SCN iPSCs compared with control iPSCs in both settings, which reflected the phenotype in patients. Interestingly, our model showed increased monocyte/macrophage production from the SCN iPSCs. Most importantly, lentiviral genetic correction of SCN iPSCs with a codon-optimized G6PC3 transgene restored granulopoiesis and reduced apoptosis of in vitro differentiated myeloid cells. Moreover, addition of vitamin B3 clearly induced granulocytic differentiation of SCN iPSCs and increased the number of neutrophils to levels comparable with those obtained from healthy control iPSCs. In summary, we established an iPSC-derived in vitro disease model, which will serve as a tool to test the potency of alternative treatment options for SCN patients, such as small molecules and gene therapeutic vectors. |
doi_str_mv | 10.1038/s41434-020-0127-y |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2354739357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A627621573</galeid><sourcerecordid>A627621573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-9dbdaf9e4e7c5e859bcbbd84db353449bbfbe88d3c11225e91a65d9b79c7c7b73</originalsourceid><addsrcrecordid>eNp9kttu1DAQhiMEokvhAbhBlpAQXKT4lDi-bCsolSqBOFxbPkx2XSXOYjsV-wI8N462FBYB8oWlme-fGc38VfWU4BOCWfc6ccIZrzHFNSZU1Lt71Ypw0dYNb-n9aoVlK2tBaHdUPUrpGmPMRUcfVkeM4oY0LVlV368gZH_jox7QGgKgvIGotzukg0M3PuvRB3TGUI6g81hYBEGbAdA66jAPk91lb5HzfQ9xqaSznwKaenTRfjhntYPeW7_IfHCzBYe2wxz9dspLLGUYkYVhSI-rB70eEjy5_Y-rL2_ffD5_V1-9v7g8P72qbcNorqUzTvcSOAjbQNdIY41xHXeGNYxzaUxvoOscs4RQ2oAkum2cNEJaYYUR7Lh6ua-7jdPXGVJWo0_LBDrANCdFWcMFk6xZ0Od_oNfTHEOZTlEuuJSYtvj_FGmp7LpyoztqrQdQPvRTjtourdVpS0VLSWlYqJO_UOU5GL2dQtlliR8IXh0ICpPhW17rOSV1-enjIfviN3YDesibNA3zcq90CJI9aOOUUoRebaMfddwpgtViO7W3nSq2U4vt1K5ont1uYTYjuDvFT58VgO6BVFJhDfHXmv5d9Qcv3-FY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416298814</pqid></control><display><type>article</type><title>Lentiviral gene therapy and vitamin B3 treatment enable granulocytic differentiation of G6PC3-deficient induced pluripotent stem cells</title><source>Springer Nature</source><creator>Hoffmann, Dirk ; Kuehle, Johannes ; Lenz, Daniela ; Philipp, Friederike ; Zychlinski, Daniela ; Lachmann, Nico ; Moritz, Thomas ; Steinemann, Doris ; Morgan, Michael ; Skokowa, Julia ; Klein, Christoph ; Schambach, Axel</creator><creatorcontrib>Hoffmann, Dirk ; Kuehle, Johannes ; Lenz, Daniela ; Philipp, Friederike ; Zychlinski, Daniela ; Lachmann, Nico ; Moritz, Thomas ; Steinemann, Doris ; Morgan, Michael ; Skokowa, Julia ; Klein, Christoph ; Schambach, Axel</creatorcontrib><description>Induced pluripotent stem cells (iPSCs) from patients with genetic disorders are a valuable source for in vitro disease models, which enable drug testing and validation of gene and cell therapies. We generated iPSCs from a severe congenital neutropenia (SCN) patient, who presented with a nonsense mutation in the glucose-6-phosphatase catalytic subunit 3 (
G6PC3
) gene causing profound defects in granulopoiesis, associated with increased susceptibility of neutrophils to apoptosis. Generated SCN iPSC clones exhibited the capacity to differentiate into hematopoietic cells of the myeloid lineage and we identified two cytokine conditions, i.e., using granulocyte-colony stimulating factor or granulocyte-macrophage colony stimulating factor in combination with interleukin-3, to model the SCN phenotype in vitro. Reduced numbers of granulocytes were produced by SCN iPSCs compared with control iPSCs in both settings, which reflected the phenotype in patients. Interestingly, our model showed increased monocyte/macrophage production from the SCN iPSCs. Most importantly, lentiviral genetic correction of SCN iPSCs with a codon-optimized G6PC3 transgene restored granulopoiesis and reduced apoptosis of in vitro differentiated myeloid cells. Moreover, addition of vitamin B3 clearly induced granulocytic differentiation of SCN iPSCs and increased the number of neutrophils to levels comparable with those obtained from healthy control iPSCs. In summary, we established an iPSC-derived in vitro disease model, which will serve as a tool to test the potency of alternative treatment options for SCN patients, such as small molecules and gene therapeutic vectors.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/s41434-020-0127-y</identifier><identifier>PMID: 32051561</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/31 ; 13/44 ; 38/77 ; 631/532/2435 ; 692/699/249 ; Analysis ; Apoptosis ; Biomedical and Life Sciences ; Biomedicine ; Brief Communication ; Care and treatment ; Cell Biology ; Cell Differentiation ; Codon ; Colonies ; Colony-stimulating factor ; Gene Expression ; Gene Therapy ; Genes ; Genetic disorders ; Genetic Therapy ; Genetic vectors ; Glucose-6-Phosphatase ; Granulocyte Colony-Stimulating Factor ; Granulocytes ; Granulopoiesis ; Health aspects ; Human Genetics ; Humans ; Induced Pluripotent Stem Cells ; Interleukin 3 ; Leukocytes (granulocytic) ; Leukocytes (neutrophilic) ; Macrophage colony stimulating factor ; Macrophages ; Monocytes ; Myeloid cells ; Nanotechnology ; Neutropenia ; Neutrophils ; Niacin ; Niacinamide ; Nicotinic acid ; Nonsense mutation ; Phenotypes ; Phosphatases ; Pluripotency ; Stem cells ; Transplantation</subject><ispartof>Gene therapy, 2020-06, Vol.27 (6), p.297-306</ispartof><rights>Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-9dbdaf9e4e7c5e859bcbbd84db353449bbfbe88d3c11225e91a65d9b79c7c7b73</citedby><cites>FETCH-LOGICAL-c532t-9dbdaf9e4e7c5e859bcbbd84db353449bbfbe88d3c11225e91a65d9b79c7c7b73</cites><orcidid>0000-0001-8797-0816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32051561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hoffmann, Dirk</creatorcontrib><creatorcontrib>Kuehle, Johannes</creatorcontrib><creatorcontrib>Lenz, Daniela</creatorcontrib><creatorcontrib>Philipp, Friederike</creatorcontrib><creatorcontrib>Zychlinski, Daniela</creatorcontrib><creatorcontrib>Lachmann, Nico</creatorcontrib><creatorcontrib>Moritz, Thomas</creatorcontrib><creatorcontrib>Steinemann, Doris</creatorcontrib><creatorcontrib>Morgan, Michael</creatorcontrib><creatorcontrib>Skokowa, Julia</creatorcontrib><creatorcontrib>Klein, Christoph</creatorcontrib><creatorcontrib>Schambach, Axel</creatorcontrib><title>Lentiviral gene therapy and vitamin B3 treatment enable granulocytic differentiation of G6PC3-deficient induced pluripotent stem cells</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>Induced pluripotent stem cells (iPSCs) from patients with genetic disorders are a valuable source for in vitro disease models, which enable drug testing and validation of gene and cell therapies. We generated iPSCs from a severe congenital neutropenia (SCN) patient, who presented with a nonsense mutation in the glucose-6-phosphatase catalytic subunit 3 (
G6PC3
) gene causing profound defects in granulopoiesis, associated with increased susceptibility of neutrophils to apoptosis. Generated SCN iPSC clones exhibited the capacity to differentiate into hematopoietic cells of the myeloid lineage and we identified two cytokine conditions, i.e., using granulocyte-colony stimulating factor or granulocyte-macrophage colony stimulating factor in combination with interleukin-3, to model the SCN phenotype in vitro. Reduced numbers of granulocytes were produced by SCN iPSCs compared with control iPSCs in both settings, which reflected the phenotype in patients. Interestingly, our model showed increased monocyte/macrophage production from the SCN iPSCs. Most importantly, lentiviral genetic correction of SCN iPSCs with a codon-optimized G6PC3 transgene restored granulopoiesis and reduced apoptosis of in vitro differentiated myeloid cells. Moreover, addition of vitamin B3 clearly induced granulocytic differentiation of SCN iPSCs and increased the number of neutrophils to levels comparable with those obtained from healthy control iPSCs. In summary, we established an iPSC-derived in vitro disease model, which will serve as a tool to test the potency of alternative treatment options for SCN patients, such as small molecules and gene therapeutic vectors.</description><subject>13/100</subject><subject>13/31</subject><subject>13/44</subject><subject>38/77</subject><subject>631/532/2435</subject><subject>692/699/249</subject><subject>Analysis</subject><subject>Apoptosis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brief Communication</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cell Differentiation</subject><subject>Codon</subject><subject>Colonies</subject><subject>Colony-stimulating factor</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Genes</subject><subject>Genetic disorders</subject><subject>Genetic Therapy</subject><subject>Genetic vectors</subject><subject>Glucose-6-Phosphatase</subject><subject>Granulocyte Colony-Stimulating Factor</subject><subject>Granulocytes</subject><subject>Granulopoiesis</subject><subject>Health aspects</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells</subject><subject>Interleukin 3</subject><subject>Leukocytes (granulocytic)</subject><subject>Leukocytes (neutrophilic)</subject><subject>Macrophage colony stimulating factor</subject><subject>Macrophages</subject><subject>Monocytes</subject><subject>Myeloid cells</subject><subject>Nanotechnology</subject><subject>Neutropenia</subject><subject>Neutrophils</subject><subject>Niacin</subject><subject>Niacinamide</subject><subject>Nicotinic acid</subject><subject>Nonsense mutation</subject><subject>Phenotypes</subject><subject>Phosphatases</subject><subject>Pluripotency</subject><subject>Stem cells</subject><subject>Transplantation</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kttu1DAQhiMEokvhAbhBlpAQXKT4lDi-bCsolSqBOFxbPkx2XSXOYjsV-wI8N462FBYB8oWlme-fGc38VfWU4BOCWfc6ccIZrzHFNSZU1Lt71Ypw0dYNb-n9aoVlK2tBaHdUPUrpGmPMRUcfVkeM4oY0LVlV368gZH_jox7QGgKgvIGotzukg0M3PuvRB3TGUI6g81hYBEGbAdA66jAPk91lb5HzfQ9xqaSznwKaenTRfjhntYPeW7_IfHCzBYe2wxz9dspLLGUYkYVhSI-rB70eEjy5_Y-rL2_ffD5_V1-9v7g8P72qbcNorqUzTvcSOAjbQNdIY41xHXeGNYxzaUxvoOscs4RQ2oAkum2cNEJaYYUR7Lh6ua-7jdPXGVJWo0_LBDrANCdFWcMFk6xZ0Od_oNfTHEOZTlEuuJSYtvj_FGmp7LpyoztqrQdQPvRTjtourdVpS0VLSWlYqJO_UOU5GL2dQtlliR8IXh0ICpPhW17rOSV1-enjIfviN3YDesibNA3zcq90CJI9aOOUUoRebaMfddwpgtViO7W3nSq2U4vt1K5ont1uYTYjuDvFT58VgO6BVFJhDfHXmv5d9Qcv3-FY</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Hoffmann, Dirk</creator><creator>Kuehle, Johannes</creator><creator>Lenz, Daniela</creator><creator>Philipp, Friederike</creator><creator>Zychlinski, Daniela</creator><creator>Lachmann, Nico</creator><creator>Moritz, Thomas</creator><creator>Steinemann, Doris</creator><creator>Morgan, Michael</creator><creator>Skokowa, Julia</creator><creator>Klein, Christoph</creator><creator>Schambach, Axel</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8797-0816</orcidid></search><sort><creationdate>20200601</creationdate><title>Lentiviral gene therapy and vitamin B3 treatment enable granulocytic differentiation of G6PC3-deficient induced pluripotent stem cells</title><author>Hoffmann, Dirk ; Kuehle, Johannes ; Lenz, Daniela ; Philipp, Friederike ; Zychlinski, Daniela ; Lachmann, Nico ; Moritz, Thomas ; Steinemann, Doris ; Morgan, Michael ; Skokowa, Julia ; Klein, Christoph ; Schambach, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-9dbdaf9e4e7c5e859bcbbd84db353449bbfbe88d3c11225e91a65d9b79c7c7b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/100</topic><topic>13/31</topic><topic>13/44</topic><topic>38/77</topic><topic>631/532/2435</topic><topic>692/699/249</topic><topic>Analysis</topic><topic>Apoptosis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brief Communication</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cell Differentiation</topic><topic>Codon</topic><topic>Colonies</topic><topic>Colony-stimulating factor</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Genes</topic><topic>Genetic disorders</topic><topic>Genetic Therapy</topic><topic>Genetic vectors</topic><topic>Glucose-6-Phosphatase</topic><topic>Granulocyte Colony-Stimulating Factor</topic><topic>Granulocytes</topic><topic>Granulopoiesis</topic><topic>Health aspects</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells</topic><topic>Interleukin 3</topic><topic>Leukocytes (granulocytic)</topic><topic>Leukocytes (neutrophilic)</topic><topic>Macrophage colony stimulating factor</topic><topic>Macrophages</topic><topic>Monocytes</topic><topic>Myeloid cells</topic><topic>Nanotechnology</topic><topic>Neutropenia</topic><topic>Neutrophils</topic><topic>Niacin</topic><topic>Niacinamide</topic><topic>Nicotinic acid</topic><topic>Nonsense mutation</topic><topic>Phenotypes</topic><topic>Phosphatases</topic><topic>Pluripotency</topic><topic>Stem cells</topic><topic>Transplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffmann, Dirk</creatorcontrib><creatorcontrib>Kuehle, Johannes</creatorcontrib><creatorcontrib>Lenz, Daniela</creatorcontrib><creatorcontrib>Philipp, Friederike</creatorcontrib><creatorcontrib>Zychlinski, Daniela</creatorcontrib><creatorcontrib>Lachmann, Nico</creatorcontrib><creatorcontrib>Moritz, Thomas</creatorcontrib><creatorcontrib>Steinemann, Doris</creatorcontrib><creatorcontrib>Morgan, Michael</creatorcontrib><creatorcontrib>Skokowa, Julia</creatorcontrib><creatorcontrib>Klein, Christoph</creatorcontrib><creatorcontrib>Schambach, Axel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffmann, Dirk</au><au>Kuehle, Johannes</au><au>Lenz, Daniela</au><au>Philipp, Friederike</au><au>Zychlinski, Daniela</au><au>Lachmann, Nico</au><au>Moritz, Thomas</au><au>Steinemann, Doris</au><au>Morgan, Michael</au><au>Skokowa, Julia</au><au>Klein, Christoph</au><au>Schambach, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lentiviral gene therapy and vitamin B3 treatment enable granulocytic differentiation of G6PC3-deficient induced pluripotent stem cells</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>27</volume><issue>6</issue><spage>297</spage><epage>306</epage><pages>297-306</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>Induced pluripotent stem cells (iPSCs) from patients with genetic disorders are a valuable source for in vitro disease models, which enable drug testing and validation of gene and cell therapies. We generated iPSCs from a severe congenital neutropenia (SCN) patient, who presented with a nonsense mutation in the glucose-6-phosphatase catalytic subunit 3 (
G6PC3
) gene causing profound defects in granulopoiesis, associated with increased susceptibility of neutrophils to apoptosis. Generated SCN iPSC clones exhibited the capacity to differentiate into hematopoietic cells of the myeloid lineage and we identified two cytokine conditions, i.e., using granulocyte-colony stimulating factor or granulocyte-macrophage colony stimulating factor in combination with interleukin-3, to model the SCN phenotype in vitro. Reduced numbers of granulocytes were produced by SCN iPSCs compared with control iPSCs in both settings, which reflected the phenotype in patients. Interestingly, our model showed increased monocyte/macrophage production from the SCN iPSCs. Most importantly, lentiviral genetic correction of SCN iPSCs with a codon-optimized G6PC3 transgene restored granulopoiesis and reduced apoptosis of in vitro differentiated myeloid cells. Moreover, addition of vitamin B3 clearly induced granulocytic differentiation of SCN iPSCs and increased the number of neutrophils to levels comparable with those obtained from healthy control iPSCs. In summary, we established an iPSC-derived in vitro disease model, which will serve as a tool to test the potency of alternative treatment options for SCN patients, such as small molecules and gene therapeutic vectors.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32051561</pmid><doi>10.1038/s41434-020-0127-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8797-0816</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-7128 |
ispartof | Gene therapy, 2020-06, Vol.27 (6), p.297-306 |
issn | 0969-7128 1476-5462 |
language | eng |
recordid | cdi_proquest_miscellaneous_2354739357 |
source | Springer Nature |
subjects | 13/100 13/31 13/44 38/77 631/532/2435 692/699/249 Analysis Apoptosis Biomedical and Life Sciences Biomedicine Brief Communication Care and treatment Cell Biology Cell Differentiation Codon Colonies Colony-stimulating factor Gene Expression Gene Therapy Genes Genetic disorders Genetic Therapy Genetic vectors Glucose-6-Phosphatase Granulocyte Colony-Stimulating Factor Granulocytes Granulopoiesis Health aspects Human Genetics Humans Induced Pluripotent Stem Cells Interleukin 3 Leukocytes (granulocytic) Leukocytes (neutrophilic) Macrophage colony stimulating factor Macrophages Monocytes Myeloid cells Nanotechnology Neutropenia Neutrophils Niacin Niacinamide Nicotinic acid Nonsense mutation Phenotypes Phosphatases Pluripotency Stem cells Transplantation |
title | Lentiviral gene therapy and vitamin B3 treatment enable granulocytic differentiation of G6PC3-deficient induced pluripotent stem cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lentiviral%20gene%20therapy%20and%20vitamin%20B3%20treatment%20enable%20granulocytic%20differentiation%20of%20G6PC3-deficient%20induced%20pluripotent%20stem%20cells&rft.jtitle=Gene%20therapy&rft.au=Hoffmann,%20Dirk&rft.date=2020-06-01&rft.volume=27&rft.issue=6&rft.spage=297&rft.epage=306&rft.pages=297-306&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/s41434-020-0127-y&rft_dat=%3Cgale_proqu%3EA627621573%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c532t-9dbdaf9e4e7c5e859bcbbd84db353449bbfbe88d3c11225e91a65d9b79c7c7b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2416298814&rft_id=info:pmid/32051561&rft_galeid=A627621573&rfr_iscdi=true |