Loading…
Association Between Muscular Strength and Bone Health from Children to Young Adults: A Systematic Review and Meta-analysis
Background Osteoporosis is a major worldwide health concern. The acquisition of bone mass during growth decreases the risk of osteoporosis later in life. Muscular strength is an important and modifiable factor to improve bone development in this period. Objective The aim of this review was to summar...
Saved in:
Published in: | Sports medicine (Auckland) 2020-06, Vol.50 (6), p.1163-1190 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Osteoporosis is a major worldwide health concern. The acquisition of bone mass during growth decreases the risk of osteoporosis later in life. Muscular strength is an important and modifiable factor to improve bone development in this period.
Objective
The aim of this review was to summarize the relationship between muscular strength and bone health.
Methods
Cross-sectional data from studies addressing this association from childhood to young adulthood were systematically searched. The DerSimonian and Laird method was used to compute pooled estimates of effect size and respective 95% CI. The meta-analyses were conducted separately for upper limbs or lower limbs muscular strength and for bone regions. Additionally, a regression model was used to estimate the influence of determinants such as age, lean mass, fat mass, height, weight and cardiorespiratory fitness in this association.
Results
Thirty-nine published studies were included in the systematic review. The pooled effect size for the association of upper limbs muscular strength with upper limbs, spine and total body BMD ranged from 0.70 to 1.07 and with upper limbs, spine and total body BMC ranged from 1.84 to 1.30. The pooled effect size for the association of lower limbs muscular strength with lower limbs, spine and total body BMD ranged from 0.54 to 0.88 and with lower limbs, spine and total body BMC ranged between 0.81 and 0.71. All reported pooled effect size estimates were statistically significant.
Conclusion
This systematic review and meta-analysis supports that muscular strength should be considered as a useful skeletal health marker during development and a target outcome for interventions aimed at improving bone health. |
---|---|
ISSN: | 0112-1642 1179-2035 |
DOI: | 10.1007/s40279-020-01267-y |