Loading…
Integrating physiological and metabolites analysis to identify ethylene involvement in petal senescence in Tulipa gesneriana
Flower senescence is classified into ethylene-dependent and ethylene-independent manners and determines the flower longevity which is valuable for ornamental plants. However, the manner of petal senescence in tulip is still less defined. In this study, we characterized the physiological indexes in t...
Saved in:
Published in: | Plant physiology and biochemistry 2020-04, Vol.149, p.121-131 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Flower senescence is classified into ethylene-dependent and ethylene-independent manners and determines the flower longevity which is valuable for ornamental plants. However, the manner of petal senescence in tulip is still less defined. In this study, we characterized the physiological indexes in the process of petal senescence, as well as metabolic and ethylene responses in tulip cultivar ‘American Dream’, and further identified the role of ethylene biosynthesis genes TgACS by transgenic and transient assays. Primary metabolites profiling revealed that sugars, amino acids and organic acids preferentially accumulated in senescent petals. Additionally, senescence-associated genes were identified and significantly up-regulated, coupled with increased ROS contents, rapid water loss and accelerated cell membrane breakdown. Moreover, ethylene production was stimulated as evidenced by increasing in ACS activity and ethylene biosynthesis-related genes expression. Exogenous treatment of cutting flowers with 1-MCP or ethephon resulted in delayed or enhanced petal senescence, respectively. Transient down-regulation of TgACS by VIGS assay in tulip petals delayed senescence, while over-expressed TgACS1 in tobacco promoted leaf senescence. Taken together, this study provides evidences to certify ethylene roles and TgACS functions during flower senescence in tulip.
•Physiological responses of petal senescence in tulip are comprehensively analyzed.•Exogenous ethephon treatment promotes petal senescence in a dose-dependent manner.•Ethylene biosynthesis and primary metabolites modification are involved in petal senescence.•TgACS genes are functionally identified by transgenic tobacco plants and VIGS assay in tulip petals. |
---|---|
ISSN: | 0981-9428 1873-2690 |
DOI: | 10.1016/j.plaphy.2020.02.001 |