Loading…

Relaxation and stability of small transition metal particles

The relaxation of interatomic distances in cubo-octahedral (fcc) and icosahedral Ni clusters of N atoms (13 ⩽ N ⩽ ∞) is determined by minimizing the cohesive energy. The electronic attractive term of the energy is calculated in the tight-binding approximation associated with the moments method, and...

Full description

Saved in:
Bibliographic Details
Published in:Surface science 1979-02, Vol.80, p.159-164
Main Authors: Gordon, M.B., Cyrot-Lackmann, F., Desjonquères, M.C.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-3eff138fdafcdf32b267edbddc69d3a77e54b78f21203902a1c6eea92fce1b953
cites cdi_FETCH-LOGICAL-c401t-3eff138fdafcdf32b267edbddc69d3a77e54b78f21203902a1c6eea92fce1b953
container_end_page 164
container_issue
container_start_page 159
container_title Surface science
container_volume 80
creator Gordon, M.B.
Cyrot-Lackmann, F.
Desjonquères, M.C.
description The relaxation of interatomic distances in cubo-octahedral (fcc) and icosahedral Ni clusters of N atoms (13 ⩽ N ⩽ ∞) is determined by minimizing the cohesive energy. The electronic attractive term of the energy is calculated in the tight-binding approximation associated with the moments method, and the repulsive interaction between atoms is described by a Born-Mayer pair potential. One finds always a contraction, which is larger for the smaller clusters. The icosahedral structure is slightly favored for the small sizes, and the fcc structure becomes the most stable for clusters of more than 150 atoms.
doi_str_mv 10.1016/0039-6028(79)90674-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23567337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0039602879906745</els_id><sourcerecordid>23567337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-3eff138fdafcdf32b267edbddc69d3a77e54b78f21203902a1c6eea92fce1b953</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78Aw89iR6q-WibBkSQxS9YEETPYZpMIJJt1yQr7r-33RWPzmUuz_sy8xByxugVo6y5plSosqG8vZDqUtFGVmW9R2aslarksm73yewPOSRHKX3QcSpVz8jNKwb4huyHvoDeFilD54PPm2JwRVpCCEWO0Ce_JZaYIRQriNmbgOmEHDgICU9_9zF5f7h_mz-Vi5fH5_ndojQVZbkU6BwTrbPgjHWCd7yRaDtrTaOsACmxrjrZOs74eCXlwEyDCIo7g6xTtTgm57veVRw-15iyXvpkMATocVgnzUXdSCHkCFY70MQhpYhOr6JfQtxoRvWkSk8e9ORBS6W3qvTUf7uL4fjEl8eok_HYG7Q-osnaDv7_gh_0FXFu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23567337</pqid></control><display><type>article</type><title>Relaxation and stability of small transition metal particles</title><source>Backfile Package - Physics General (Legacy) [YPA]</source><creator>Gordon, M.B. ; Cyrot-Lackmann, F. ; Desjonquères, M.C.</creator><creatorcontrib>Gordon, M.B. ; Cyrot-Lackmann, F. ; Desjonquères, M.C.</creatorcontrib><description>The relaxation of interatomic distances in cubo-octahedral (fcc) and icosahedral Ni clusters of N atoms (13 ⩽ N ⩽ ∞) is determined by minimizing the cohesive energy. The electronic attractive term of the energy is calculated in the tight-binding approximation associated with the moments method, and the repulsive interaction between atoms is described by a Born-Mayer pair potential. One finds always a contraction, which is larger for the smaller clusters. The icosahedral structure is slightly favored for the small sizes, and the fcc structure becomes the most stable for clusters of more than 150 atoms.</description><identifier>ISSN: 0039-6028</identifier><identifier>EISSN: 1879-2758</identifier><identifier>DOI: 10.1016/0039-6028(79)90674-5</identifier><language>eng</language><publisher>Elsevier B.V</publisher><ispartof>Surface science, 1979-02, Vol.80, p.159-164</ispartof><rights>1979 North-Holland Publishing Company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-3eff138fdafcdf32b267edbddc69d3a77e54b78f21203902a1c6eea92fce1b953</citedby><cites>FETCH-LOGICAL-c401t-3eff138fdafcdf32b267edbddc69d3a77e54b78f21203902a1c6eea92fce1b953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0039602879906745$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3619,27901,27902,45987</link.rule.ids></links><search><creatorcontrib>Gordon, M.B.</creatorcontrib><creatorcontrib>Cyrot-Lackmann, F.</creatorcontrib><creatorcontrib>Desjonquères, M.C.</creatorcontrib><title>Relaxation and stability of small transition metal particles</title><title>Surface science</title><description>The relaxation of interatomic distances in cubo-octahedral (fcc) and icosahedral Ni clusters of N atoms (13 ⩽ N ⩽ ∞) is determined by minimizing the cohesive energy. The electronic attractive term of the energy is calculated in the tight-binding approximation associated with the moments method, and the repulsive interaction between atoms is described by a Born-Mayer pair potential. One finds always a contraction, which is larger for the smaller clusters. The icosahedral structure is slightly favored for the small sizes, and the fcc structure becomes the most stable for clusters of more than 150 atoms.</description><issn>0039-6028</issn><issn>1879-2758</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1979</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78Aw89iR6q-WibBkSQxS9YEETPYZpMIJJt1yQr7r-33RWPzmUuz_sy8xByxugVo6y5plSosqG8vZDqUtFGVmW9R2aslarksm73yewPOSRHKX3QcSpVz8jNKwb4huyHvoDeFilD54PPm2JwRVpCCEWO0Ce_JZaYIRQriNmbgOmEHDgICU9_9zF5f7h_mz-Vi5fH5_ndojQVZbkU6BwTrbPgjHWCd7yRaDtrTaOsACmxrjrZOs74eCXlwEyDCIo7g6xTtTgm57veVRw-15iyXvpkMATocVgnzUXdSCHkCFY70MQhpYhOr6JfQtxoRvWkSk8e9ORBS6W3qvTUf7uL4fjEl8eok_HYG7Q-osnaDv7_gh_0FXFu</recordid><startdate>19790201</startdate><enddate>19790201</enddate><creator>Gordon, M.B.</creator><creator>Cyrot-Lackmann, F.</creator><creator>Desjonquères, M.C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19790201</creationdate><title>Relaxation and stability of small transition metal particles</title><author>Gordon, M.B. ; Cyrot-Lackmann, F. ; Desjonquères, M.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-3eff138fdafcdf32b267edbddc69d3a77e54b78f21203902a1c6eea92fce1b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1979</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gordon, M.B.</creatorcontrib><creatorcontrib>Cyrot-Lackmann, F.</creatorcontrib><creatorcontrib>Desjonquères, M.C.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gordon, M.B.</au><au>Cyrot-Lackmann, F.</au><au>Desjonquères, M.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxation and stability of small transition metal particles</atitle><jtitle>Surface science</jtitle><date>1979-02-01</date><risdate>1979</risdate><volume>80</volume><spage>159</spage><epage>164</epage><pages>159-164</pages><issn>0039-6028</issn><eissn>1879-2758</eissn><abstract>The relaxation of interatomic distances in cubo-octahedral (fcc) and icosahedral Ni clusters of N atoms (13 ⩽ N ⩽ ∞) is determined by minimizing the cohesive energy. The electronic attractive term of the energy is calculated in the tight-binding approximation associated with the moments method, and the repulsive interaction between atoms is described by a Born-Mayer pair potential. One finds always a contraction, which is larger for the smaller clusters. The icosahedral structure is slightly favored for the small sizes, and the fcc structure becomes the most stable for clusters of more than 150 atoms.</abstract><pub>Elsevier B.V</pub><doi>10.1016/0039-6028(79)90674-5</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-6028
ispartof Surface science, 1979-02, Vol.80, p.159-164
issn 0039-6028
1879-2758
language eng
recordid cdi_proquest_miscellaneous_23567337
source Backfile Package - Physics General (Legacy) [YPA]
title Relaxation and stability of small transition metal particles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxation%20and%20stability%20of%20small%20transition%20metal%20particles&rft.jtitle=Surface%20science&rft.au=Gordon,%20M.B.&rft.date=1979-02-01&rft.volume=80&rft.spage=159&rft.epage=164&rft.pages=159-164&rft.issn=0039-6028&rft.eissn=1879-2758&rft_id=info:doi/10.1016/0039-6028(79)90674-5&rft_dat=%3Cproquest_cross%3E23567337%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-3eff138fdafcdf32b267edbddc69d3a77e54b78f21203902a1c6eea92fce1b953%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=23567337&rft_id=info:pmid/&rfr_iscdi=true