Loading…

Floating point Gröbner bases

Bracket coefficients for polynomials are introduced. These are like specific precision floating point numbers together with error terms. Working in terms of bracket coefficients, an algorithm that computes a Gröbner basis with floating point coefficients is presented, and a new criterion for determi...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics and computers in simulation 1996, Vol.42 (4), p.509-528
Main Author: Shirayanagi, Kiyoshi
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-e262b27132454e95ab58e992d23f1abdc4899bd6f2d1220bc96b5e587b5838d43
cites cdi_FETCH-LOGICAL-c338t-e262b27132454e95ab58e992d23f1abdc4899bd6f2d1220bc96b5e587b5838d43
container_end_page 528
container_issue 4
container_start_page 509
container_title Mathematics and computers in simulation
container_volume 42
creator Shirayanagi, Kiyoshi
description Bracket coefficients for polynomials are introduced. These are like specific precision floating point numbers together with error terms. Working in terms of bracket coefficients, an algorithm that computes a Gröbner basis with floating point coefficients is presented, and a new criterion for determining whether a bracket coefficient is zero is proposed. Given a finite set F of polynomials with real coefficients, let G μ be the result of the algorithm for F and a precision value μ, and G be a true Gröbner basis of F. Then, as μ approaches infinity, G μ converges to G coefficientwise. Moreover, there is a precision M such that if μ ≥ M, then the sets of monomials with non-zero coefficients of G μ and G are exactly the same. The practical usefulness of the algorithm is suggested by experimental results.
doi_str_mv 10.1016/S0378-4754(96)00027-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_23582423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378475496000274</els_id><sourcerecordid>23582423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-e262b27132454e95ab58e992d23f1abdc4899bd6f2d1220bc96b5e587b5838d43</originalsourceid><addsrcrecordid>eNqFkMtKA0EQRRtRMEY_IZCV6GK034-VSDBRCLhQ100_aqRlMhO7J4I_5g_4Y04SceuqanHqFvcgNCH4imAir58wU7riSvALIy8xxlRV_ACNiFa0UkTKQzT6Q47RSSlvAzTsYoQm86ZzfWpfp-sutf10kb-_fAt56l2BcoqOatcUOPudY_Qyv3ue3VfLx8XD7HZZBcZ0XwGV1FNFGOWCgxHOCw3G0EhZTZyPgWtjfJQ1jYRS7IORXoDQauCYjpyN0fk-d5279w2U3q5SCdA0roVuUyxlQlNO2QCKPRhyV0qG2q5zWrn8aQm2Wxl2J8Num1oj7U6G3T642d_B0OIjQbYlJGgDxJQh9DZ26Z-EH1mMZSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23582423</pqid></control><display><type>article</type><title>Floating point Gröbner bases</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Shirayanagi, Kiyoshi</creator><creatorcontrib>Shirayanagi, Kiyoshi</creatorcontrib><description>Bracket coefficients for polynomials are introduced. These are like specific precision floating point numbers together with error terms. Working in terms of bracket coefficients, an algorithm that computes a Gröbner basis with floating point coefficients is presented, and a new criterion for determining whether a bracket coefficient is zero is proposed. Given a finite set F of polynomials with real coefficients, let G μ be the result of the algorithm for F and a precision value μ, and G be a true Gröbner basis of F. Then, as μ approaches infinity, G μ converges to G coefficientwise. Moreover, there is a precision M such that if μ ≥ M, then the sets of monomials with non-zero coefficients of G μ and G are exactly the same. The practical usefulness of the algorithm is suggested by experimental results.</description><identifier>ISSN: 0378-4754</identifier><identifier>EISSN: 1872-7166</identifier><identifier>DOI: 10.1016/S0378-4754(96)00027-4</identifier><language>eng</language><publisher>Elsevier B.V</publisher><ispartof>Mathematics and computers in simulation, 1996, Vol.42 (4), p.509-528</ispartof><rights>1996</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-e262b27132454e95ab58e992d23f1abdc4899bd6f2d1220bc96b5e587b5838d43</citedby><cites>FETCH-LOGICAL-c338t-e262b27132454e95ab58e992d23f1abdc4899bd6f2d1220bc96b5e587b5838d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378475496000274$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3415,3550,4009,27902,27903,27904,45951,45981</link.rule.ids></links><search><creatorcontrib>Shirayanagi, Kiyoshi</creatorcontrib><title>Floating point Gröbner bases</title><title>Mathematics and computers in simulation</title><description>Bracket coefficients for polynomials are introduced. These are like specific precision floating point numbers together with error terms. Working in terms of bracket coefficients, an algorithm that computes a Gröbner basis with floating point coefficients is presented, and a new criterion for determining whether a bracket coefficient is zero is proposed. Given a finite set F of polynomials with real coefficients, let G μ be the result of the algorithm for F and a precision value μ, and G be a true Gröbner basis of F. Then, as μ approaches infinity, G μ converges to G coefficientwise. Moreover, there is a precision M such that if μ ≥ M, then the sets of monomials with non-zero coefficients of G μ and G are exactly the same. The practical usefulness of the algorithm is suggested by experimental results.</description><issn>0378-4754</issn><issn>1872-7166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKA0EQRRtRMEY_IZCV6GK034-VSDBRCLhQ100_aqRlMhO7J4I_5g_4Y04SceuqanHqFvcgNCH4imAir58wU7riSvALIy8xxlRV_ACNiFa0UkTKQzT6Q47RSSlvAzTsYoQm86ZzfWpfp-sutf10kb-_fAt56l2BcoqOatcUOPudY_Qyv3ue3VfLx8XD7HZZBcZ0XwGV1FNFGOWCgxHOCw3G0EhZTZyPgWtjfJQ1jYRS7IORXoDQauCYjpyN0fk-d5279w2U3q5SCdA0roVuUyxlQlNO2QCKPRhyV0qG2q5zWrn8aQm2Wxl2J8Num1oj7U6G3T642d_B0OIjQbYlJGgDxJQh9DZ26Z-EH1mMZSY</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Shirayanagi, Kiyoshi</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>1996</creationdate><title>Floating point Gröbner bases</title><author>Shirayanagi, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-e262b27132454e95ab58e992d23f1abdc4899bd6f2d1220bc96b5e587b5838d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirayanagi, Kiyoshi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematics and computers in simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirayanagi, Kiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Floating point Gröbner bases</atitle><jtitle>Mathematics and computers in simulation</jtitle><date>1996</date><risdate>1996</risdate><volume>42</volume><issue>4</issue><spage>509</spage><epage>528</epage><pages>509-528</pages><issn>0378-4754</issn><eissn>1872-7166</eissn><abstract>Bracket coefficients for polynomials are introduced. These are like specific precision floating point numbers together with error terms. Working in terms of bracket coefficients, an algorithm that computes a Gröbner basis with floating point coefficients is presented, and a new criterion for determining whether a bracket coefficient is zero is proposed. Given a finite set F of polynomials with real coefficients, let G μ be the result of the algorithm for F and a precision value μ, and G be a true Gröbner basis of F. Then, as μ approaches infinity, G μ converges to G coefficientwise. Moreover, there is a precision M such that if μ ≥ M, then the sets of monomials with non-zero coefficients of G μ and G are exactly the same. The practical usefulness of the algorithm is suggested by experimental results.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0378-4754(96)00027-4</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-4754
ispartof Mathematics and computers in simulation, 1996, Vol.42 (4), p.509-528
issn 0378-4754
1872-7166
language eng
recordid cdi_proquest_miscellaneous_23582423
source ScienceDirect Freedom Collection; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
title Floating point Gröbner bases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Floating%20point%20Gr%C3%B6bner%20bases&rft.jtitle=Mathematics%20and%20computers%20in%20simulation&rft.au=Shirayanagi,%20Kiyoshi&rft.date=1996&rft.volume=42&rft.issue=4&rft.spage=509&rft.epage=528&rft.pages=509-528&rft.issn=0378-4754&rft.eissn=1872-7166&rft_id=info:doi/10.1016/S0378-4754(96)00027-4&rft_dat=%3Cproquest_cross%3E23582423%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-e262b27132454e95ab58e992d23f1abdc4899bd6f2d1220bc96b5e587b5838d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=23582423&rft_id=info:pmid/&rfr_iscdi=true