Loading…

Basis for finding exact coherent states

One of the outstanding problems in the dynamical systems approach to turbulence is to find a sufficient number of invariant solutions to characterize the underlying dynamics of turbulence [Annu. Rev. Fluid Mech. 44, 203 (2012)10.1146/annurev-fluid-120710-101228]. As a practical matter, the solutions...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2020-01, Vol.101 (1-1), p.012213-012213, Article 012213
Main Authors: Ahmed, M Arslan, Sharma, Ati S
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63
cites cdi_FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63
container_end_page 012213
container_issue 1-1
container_start_page 012213
container_title Physical review. E
container_volume 101
creator Ahmed, M Arslan
Sharma, Ati S
description One of the outstanding problems in the dynamical systems approach to turbulence is to find a sufficient number of invariant solutions to characterize the underlying dynamics of turbulence [Annu. Rev. Fluid Mech. 44, 203 (2012)10.1146/annurev-fluid-120710-101228]. As a practical matter, the solutions can be difficult to find. To improve this situation, we show how to find periodic orbits and equilibria in plane Couette flow by projecting pseudorecurrent segments of turbulent trajectories onto the left-singular vectors of the Navier-Stokes equations linearized about the relevant mean flow (resolvent modes). The projections are, subsequently, used to initiate Newton-Krylov-hookstep searches, and new (relative) periodic orbits and equilibria are discovered. We call the process project-then-search and validate the process by first applying it to previously known fixed point and periodic solutions. Along the way, we find new branches of equilibria, which include bifurcations from previously known branches, and new periodic orbits that closely shadow turbulent trajectories in state space.
doi_str_mv 10.1103/PhysRevE.101.012213
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2358575475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2358575475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63</originalsourceid><addsrcrecordid>eNo9kNtKw0AQhhdRbKl9AkFypzepM9lsNnuppR6goIhehz3M2kia1N1U7Ntb6eFqfob_AB9jlwgTROC3r4tNfKOf2QQBJ4BZhvyEDbNcQgog-OlR52LAxjF-AQAWoCRm52zAMyiUUGLIru91rGPiu5D4unV1-5nQr7Z9YrsFBWr7JPa6p3jBzrxuIo33d8Q-Hmbv06d0_vL4PL2bp5aD6FOTC62oNKV1ymkuPWJBpTAFGuscOs-N1BaMUlZKII4evVJGqsKDRSr4iN3seleh-15T7KtlHS01jW6pW8cq46IUUuRSbK18Z7WhizGQr1ahXuqwqRCqf0jVAdL2gdUO0jZ1tR9YmyW5Y-aAhP8B3axjVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358575475</pqid></control><display><type>article</type><title>Basis for finding exact coherent states</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Ahmed, M Arslan ; Sharma, Ati S</creator><creatorcontrib>Ahmed, M Arslan ; Sharma, Ati S</creatorcontrib><description>One of the outstanding problems in the dynamical systems approach to turbulence is to find a sufficient number of invariant solutions to characterize the underlying dynamics of turbulence [Annu. Rev. Fluid Mech. 44, 203 (2012)10.1146/annurev-fluid-120710-101228]. As a practical matter, the solutions can be difficult to find. To improve this situation, we show how to find periodic orbits and equilibria in plane Couette flow by projecting pseudorecurrent segments of turbulent trajectories onto the left-singular vectors of the Navier-Stokes equations linearized about the relevant mean flow (resolvent modes). The projections are, subsequently, used to initiate Newton-Krylov-hookstep searches, and new (relative) periodic orbits and equilibria are discovered. We call the process project-then-search and validate the process by first applying it to previously known fixed point and periodic solutions. Along the way, we find new branches of equilibria, which include bifurcations from previously known branches, and new periodic orbits that closely shadow turbulent trajectories in state space.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.101.012213</identifier><identifier>PMID: 32069595</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2020-01, Vol.101 (1-1), p.012213-012213, Article 012213</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63</citedby><cites>FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63</cites><orcidid>0000-0002-3479-6946 ; 0000-0002-7170-1627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32069595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, M Arslan</creatorcontrib><creatorcontrib>Sharma, Ati S</creatorcontrib><title>Basis for finding exact coherent states</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>One of the outstanding problems in the dynamical systems approach to turbulence is to find a sufficient number of invariant solutions to characterize the underlying dynamics of turbulence [Annu. Rev. Fluid Mech. 44, 203 (2012)10.1146/annurev-fluid-120710-101228]. As a practical matter, the solutions can be difficult to find. To improve this situation, we show how to find periodic orbits and equilibria in plane Couette flow by projecting pseudorecurrent segments of turbulent trajectories onto the left-singular vectors of the Navier-Stokes equations linearized about the relevant mean flow (resolvent modes). The projections are, subsequently, used to initiate Newton-Krylov-hookstep searches, and new (relative) periodic orbits and equilibria are discovered. We call the process project-then-search and validate the process by first applying it to previously known fixed point and periodic solutions. Along the way, we find new branches of equilibria, which include bifurcations from previously known branches, and new periodic orbits that closely shadow turbulent trajectories in state space.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKw0AQhhdRbKl9AkFypzepM9lsNnuppR6goIhehz3M2kia1N1U7Ntb6eFqfob_AB9jlwgTROC3r4tNfKOf2QQBJ4BZhvyEDbNcQgog-OlR52LAxjF-AQAWoCRm52zAMyiUUGLIru91rGPiu5D4unV1-5nQr7Z9YrsFBWr7JPa6p3jBzrxuIo33d8Q-Hmbv06d0_vL4PL2bp5aD6FOTC62oNKV1ymkuPWJBpTAFGuscOs-N1BaMUlZKII4evVJGqsKDRSr4iN3seleh-15T7KtlHS01jW6pW8cq46IUUuRSbK18Z7WhizGQr1ahXuqwqRCqf0jVAdL2gdUO0jZ1tR9YmyW5Y-aAhP8B3axjVg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Ahmed, M Arslan</creator><creator>Sharma, Ati S</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3479-6946</orcidid><orcidid>https://orcid.org/0000-0002-7170-1627</orcidid></search><sort><creationdate>202001</creationdate><title>Basis for finding exact coherent states</title><author>Ahmed, M Arslan ; Sharma, Ati S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, M Arslan</creatorcontrib><creatorcontrib>Sharma, Ati S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, M Arslan</au><au>Sharma, Ati S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basis for finding exact coherent states</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2020-01</date><risdate>2020</risdate><volume>101</volume><issue>1-1</issue><spage>012213</spage><epage>012213</epage><pages>012213-012213</pages><artnum>012213</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>One of the outstanding problems in the dynamical systems approach to turbulence is to find a sufficient number of invariant solutions to characterize the underlying dynamics of turbulence [Annu. Rev. Fluid Mech. 44, 203 (2012)10.1146/annurev-fluid-120710-101228]. As a practical matter, the solutions can be difficult to find. To improve this situation, we show how to find periodic orbits and equilibria in plane Couette flow by projecting pseudorecurrent segments of turbulent trajectories onto the left-singular vectors of the Navier-Stokes equations linearized about the relevant mean flow (resolvent modes). The projections are, subsequently, used to initiate Newton-Krylov-hookstep searches, and new (relative) periodic orbits and equilibria are discovered. We call the process project-then-search and validate the process by first applying it to previously known fixed point and periodic solutions. Along the way, we find new branches of equilibria, which include bifurcations from previously known branches, and new periodic orbits that closely shadow turbulent trajectories in state space.</abstract><cop>United States</cop><pmid>32069595</pmid><doi>10.1103/PhysRevE.101.012213</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3479-6946</orcidid><orcidid>https://orcid.org/0000-0002-7170-1627</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2020-01, Vol.101 (1-1), p.012213-012213, Article 012213
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2358575475
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Basis for finding exact coherent states
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basis%20for%20finding%20exact%20coherent%20states&rft.jtitle=Physical%20review.%20E&rft.au=Ahmed,%20M%20Arslan&rft.date=2020-01&rft.volume=101&rft.issue=1-1&rft.spage=012213&rft.epage=012213&rft.pages=012213-012213&rft.artnum=012213&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.101.012213&rft_dat=%3Cproquest_cross%3E2358575475%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2358575475&rft_id=info:pmid/32069595&rfr_iscdi=true