Loading…
Basis for finding exact coherent states
One of the outstanding problems in the dynamical systems approach to turbulence is to find a sufficient number of invariant solutions to characterize the underlying dynamics of turbulence [Annu. Rev. Fluid Mech. 44, 203 (2012)10.1146/annurev-fluid-120710-101228]. As a practical matter, the solutions...
Saved in:
Published in: | Physical review. E 2020-01, Vol.101 (1-1), p.012213-012213, Article 012213 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63 |
container_end_page | 012213 |
container_issue | 1-1 |
container_start_page | 012213 |
container_title | Physical review. E |
container_volume | 101 |
creator | Ahmed, M Arslan Sharma, Ati S |
description | One of the outstanding problems in the dynamical systems approach to turbulence is to find a sufficient number of invariant solutions to characterize the underlying dynamics of turbulence [Annu. Rev. Fluid Mech. 44, 203 (2012)10.1146/annurev-fluid-120710-101228]. As a practical matter, the solutions can be difficult to find. To improve this situation, we show how to find periodic orbits and equilibria in plane Couette flow by projecting pseudorecurrent segments of turbulent trajectories onto the left-singular vectors of the Navier-Stokes equations linearized about the relevant mean flow (resolvent modes). The projections are, subsequently, used to initiate Newton-Krylov-hookstep searches, and new (relative) periodic orbits and equilibria are discovered. We call the process project-then-search and validate the process by first applying it to previously known fixed point and periodic solutions. Along the way, we find new branches of equilibria, which include bifurcations from previously known branches, and new periodic orbits that closely shadow turbulent trajectories in state space. |
doi_str_mv | 10.1103/PhysRevE.101.012213 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2358575475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2358575475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63</originalsourceid><addsrcrecordid>eNo9kNtKw0AQhhdRbKl9AkFypzepM9lsNnuppR6goIhehz3M2kia1N1U7Ntb6eFqfob_AB9jlwgTROC3r4tNfKOf2QQBJ4BZhvyEDbNcQgog-OlR52LAxjF-AQAWoCRm52zAMyiUUGLIru91rGPiu5D4unV1-5nQr7Z9YrsFBWr7JPa6p3jBzrxuIo33d8Q-Hmbv06d0_vL4PL2bp5aD6FOTC62oNKV1ymkuPWJBpTAFGuscOs-N1BaMUlZKII4evVJGqsKDRSr4iN3seleh-15T7KtlHS01jW6pW8cq46IUUuRSbK18Z7WhizGQr1ahXuqwqRCqf0jVAdL2gdUO0jZ1tR9YmyW5Y-aAhP8B3axjVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2358575475</pqid></control><display><type>article</type><title>Basis for finding exact coherent states</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Ahmed, M Arslan ; Sharma, Ati S</creator><creatorcontrib>Ahmed, M Arslan ; Sharma, Ati S</creatorcontrib><description>One of the outstanding problems in the dynamical systems approach to turbulence is to find a sufficient number of invariant solutions to characterize the underlying dynamics of turbulence [Annu. Rev. Fluid Mech. 44, 203 (2012)10.1146/annurev-fluid-120710-101228]. As a practical matter, the solutions can be difficult to find. To improve this situation, we show how to find periodic orbits and equilibria in plane Couette flow by projecting pseudorecurrent segments of turbulent trajectories onto the left-singular vectors of the Navier-Stokes equations linearized about the relevant mean flow (resolvent modes). The projections are, subsequently, used to initiate Newton-Krylov-hookstep searches, and new (relative) periodic orbits and equilibria are discovered. We call the process project-then-search and validate the process by first applying it to previously known fixed point and periodic solutions. Along the way, we find new branches of equilibria, which include bifurcations from previously known branches, and new periodic orbits that closely shadow turbulent trajectories in state space.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.101.012213</identifier><identifier>PMID: 32069595</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2020-01, Vol.101 (1-1), p.012213-012213, Article 012213</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63</citedby><cites>FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63</cites><orcidid>0000-0002-3479-6946 ; 0000-0002-7170-1627</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32069595$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, M Arslan</creatorcontrib><creatorcontrib>Sharma, Ati S</creatorcontrib><title>Basis for finding exact coherent states</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>One of the outstanding problems in the dynamical systems approach to turbulence is to find a sufficient number of invariant solutions to characterize the underlying dynamics of turbulence [Annu. Rev. Fluid Mech. 44, 203 (2012)10.1146/annurev-fluid-120710-101228]. As a practical matter, the solutions can be difficult to find. To improve this situation, we show how to find periodic orbits and equilibria in plane Couette flow by projecting pseudorecurrent segments of turbulent trajectories onto the left-singular vectors of the Navier-Stokes equations linearized about the relevant mean flow (resolvent modes). The projections are, subsequently, used to initiate Newton-Krylov-hookstep searches, and new (relative) periodic orbits and equilibria are discovered. We call the process project-then-search and validate the process by first applying it to previously known fixed point and periodic solutions. Along the way, we find new branches of equilibria, which include bifurcations from previously known branches, and new periodic orbits that closely shadow turbulent trajectories in state space.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKw0AQhhdRbKl9AkFypzepM9lsNnuppR6goIhehz3M2kia1N1U7Ntb6eFqfob_AB9jlwgTROC3r4tNfKOf2QQBJ4BZhvyEDbNcQgog-OlR52LAxjF-AQAWoCRm52zAMyiUUGLIru91rGPiu5D4unV1-5nQr7Z9YrsFBWr7JPa6p3jBzrxuIo33d8Q-Hmbv06d0_vL4PL2bp5aD6FOTC62oNKV1ymkuPWJBpTAFGuscOs-N1BaMUlZKII4evVJGqsKDRSr4iN3seleh-15T7KtlHS01jW6pW8cq46IUUuRSbK18Z7WhizGQr1ahXuqwqRCqf0jVAdL2gdUO0jZ1tR9YmyW5Y-aAhP8B3axjVg</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Ahmed, M Arslan</creator><creator>Sharma, Ati S</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3479-6946</orcidid><orcidid>https://orcid.org/0000-0002-7170-1627</orcidid></search><sort><creationdate>202001</creationdate><title>Basis for finding exact coherent states</title><author>Ahmed, M Arslan ; Sharma, Ati S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, M Arslan</creatorcontrib><creatorcontrib>Sharma, Ati S</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, M Arslan</au><au>Sharma, Ati S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basis for finding exact coherent states</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2020-01</date><risdate>2020</risdate><volume>101</volume><issue>1-1</issue><spage>012213</spage><epage>012213</epage><pages>012213-012213</pages><artnum>012213</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>One of the outstanding problems in the dynamical systems approach to turbulence is to find a sufficient number of invariant solutions to characterize the underlying dynamics of turbulence [Annu. Rev. Fluid Mech. 44, 203 (2012)10.1146/annurev-fluid-120710-101228]. As a practical matter, the solutions can be difficult to find. To improve this situation, we show how to find periodic orbits and equilibria in plane Couette flow by projecting pseudorecurrent segments of turbulent trajectories onto the left-singular vectors of the Navier-Stokes equations linearized about the relevant mean flow (resolvent modes). The projections are, subsequently, used to initiate Newton-Krylov-hookstep searches, and new (relative) periodic orbits and equilibria are discovered. We call the process project-then-search and validate the process by first applying it to previously known fixed point and periodic solutions. Along the way, we find new branches of equilibria, which include bifurcations from previously known branches, and new periodic orbits that closely shadow turbulent trajectories in state space.</abstract><cop>United States</cop><pmid>32069595</pmid><doi>10.1103/PhysRevE.101.012213</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3479-6946</orcidid><orcidid>https://orcid.org/0000-0002-7170-1627</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2020-01, Vol.101 (1-1), p.012213-012213, Article 012213 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_2358575475 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Basis for finding exact coherent states |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T23%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basis%20for%20finding%20exact%20coherent%20states&rft.jtitle=Physical%20review.%20E&rft.au=Ahmed,%20M%20Arslan&rft.date=2020-01&rft.volume=101&rft.issue=1-1&rft.spage=012213&rft.epage=012213&rft.pages=012213-012213&rft.artnum=012213&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.101.012213&rft_dat=%3Cproquest_cross%3E2358575475%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-b45a9e8b8cd9da37f116e85b61bcdd1df3b7ac0b99c770e31f1f99b796f0c1e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2358575475&rft_id=info:pmid/32069595&rfr_iscdi=true |