Loading…

The Genome of Shaw’s Sea Snake (Hydrophis curtus) Reveals Secondary Adaptation to Its Marine Environment

The transition of terrestrial snakes to marine life ∼10 Ma is ideal for exploring adaptive evolution. Sea snakes possess phenotype specializations including laterally compressed bodies, paddle-shaped tails, valvular nostrils, cutaneous respiration, elongated lungs, and salt glands, yet, knowledge on...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology and evolution 2020-06, Vol.37 (6), p.1744-1760
Main Authors: Peng, Changjun, Ren, Jin-Long, Deng, Cao, Jiang, Dechun, Wang, Jichao, Qu, Jiangyong, Chang, Jiang, Yan, Chaochao, Jiang, Ke, Murphy, Robert W, Wu, Dong-Dong, Li, Jia-Tang
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-df70f5a53eb78163e101961a5590edd66c28429c24e63caa0248ad8b2b888c313
cites
container_end_page 1760
container_issue 6
container_start_page 1744
container_title Molecular biology and evolution
container_volume 37
creator Peng, Changjun
Ren, Jin-Long
Deng, Cao
Jiang, Dechun
Wang, Jichao
Qu, Jiangyong
Chang, Jiang
Yan, Chaochao
Jiang, Ke
Murphy, Robert W
Wu, Dong-Dong
Li, Jia-Tang
description The transition of terrestrial snakes to marine life ∼10 Ma is ideal for exploring adaptive evolution. Sea snakes possess phenotype specializations including laterally compressed bodies, paddle-shaped tails, valvular nostrils, cutaneous respiration, elongated lungs, and salt glands, yet, knowledge on the genetic underpinnings of the transition remains limited. Herein, we report the first genome of Shaw’s sea snake (Hydrophis curtus) and use it to investigate sea snake secondary marine adaptation. A hybrid assembly strategy obtains a high-quality genome. Gene family analyses date a pulsed coding-gene expansion to ∼20 Ma, and these genes associate strongly with adaptations to marine environments. Analyses of selection pressure and convergent evolution discover the rapid evolution of protein-coding genes, and some convergent features. Additionally, 108 conserved noncoding elements appear to have evolved quickly, and these may underpin the phenotypic changes. Transposon elements may contribute to adaptive specializations by inserting into genomic regions around functionally related coding genes. The integration of genomic and transcriptomic analyses indicates independent origins and different components in sea snake and terrestrial snake venom; the venom gland of the sea snake harbors the highest PLA2 (17.23%) expression in selected elapids and these genes may organize tandemly in the genome. These analyses provide insights into the genetic mechanisms that underlay the secondary adaptation to marine and venom production of this sea snake.
doi_str_mv 10.1093/molbev/msaa043
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2359395243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/molbev/msaa043</oup_id><sourcerecordid>2359395243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-df70f5a53eb78163e101961a5590edd66c28429c24e63caa0248ad8b2b888c313</originalsourceid><addsrcrecordid>eNqFkE9PwjAYxhujEUSvHk2PcADatfvTIyEIJBgTwfPSde_CkLWz3TDc_Bp-PT-JI0Ovnt738Hue5PkhdE_JiBLBxoXZJ3AYF05KwtkF6lKfhUMaUnGJuiRsfk5Y1EE3zu0IoZwHwTXqMI-EoeC8i3abLeA5aFMANhleb-XH9-eXw2uQeK3lG-D-4phaU25zh1Vtq9oN8AscQO5PkDI6lfaIJ6ksK1nlRuPK4GXl8JO0uQY804fcGl2Arm7RVdak4O58e-j1cbaZLoar5_lyOlkNFQtENUyzkGS-9BkkYUQDBpRQEVDp-4JAmgaB8iLuCeVxCJhqZns8kmmUeEkURYpR1kP9tre05r0GV8VF7hTs91KDqV3sMV8w4XucNeioRZU1zlnI4tLmRTMopiQ--Y1bv_HZbxN4OHfXSQHpH_4rtAEGLWDq8r-yH3m7h7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2359395243</pqid></control><display><type>article</type><title>The Genome of Shaw’s Sea Snake (Hydrophis curtus) Reveals Secondary Adaptation to Its Marine Environment</title><source>Oxford Journals Open Access Collection</source><creator>Peng, Changjun ; Ren, Jin-Long ; Deng, Cao ; Jiang, Dechun ; Wang, Jichao ; Qu, Jiangyong ; Chang, Jiang ; Yan, Chaochao ; Jiang, Ke ; Murphy, Robert W ; Wu, Dong-Dong ; Li, Jia-Tang</creator><creatorcontrib>Peng, Changjun ; Ren, Jin-Long ; Deng, Cao ; Jiang, Dechun ; Wang, Jichao ; Qu, Jiangyong ; Chang, Jiang ; Yan, Chaochao ; Jiang, Ke ; Murphy, Robert W ; Wu, Dong-Dong ; Li, Jia-Tang</creatorcontrib><description>The transition of terrestrial snakes to marine life ∼10 Ma is ideal for exploring adaptive evolution. Sea snakes possess phenotype specializations including laterally compressed bodies, paddle-shaped tails, valvular nostrils, cutaneous respiration, elongated lungs, and salt glands, yet, knowledge on the genetic underpinnings of the transition remains limited. Herein, we report the first genome of Shaw’s sea snake (Hydrophis curtus) and use it to investigate sea snake secondary marine adaptation. A hybrid assembly strategy obtains a high-quality genome. Gene family analyses date a pulsed coding-gene expansion to ∼20 Ma, and these genes associate strongly with adaptations to marine environments. Analyses of selection pressure and convergent evolution discover the rapid evolution of protein-coding genes, and some convergent features. Additionally, 108 conserved noncoding elements appear to have evolved quickly, and these may underpin the phenotypic changes. Transposon elements may contribute to adaptive specializations by inserting into genomic regions around functionally related coding genes. The integration of genomic and transcriptomic analyses indicates independent origins and different components in sea snake and terrestrial snake venom; the venom gland of the sea snake harbors the highest PLA2 (17.23%) expression in selected elapids and these genes may organize tandemly in the genome. These analyses provide insights into the genetic mechanisms that underlay the secondary adaptation to marine and venom production of this sea snake.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msaa043</identifier><identifier>PMID: 32077944</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Adaptation, Biological ; Animals ; Aquatic Organisms ; DNA Transposable Elements ; Evolution, Molecular ; Female ; Genome ; Hydrophiidae - genetics ; Molecular Sequence Annotation ; Multigene Family</subject><ispartof>Molecular biology and evolution, 2020-06, Vol.37 (6), p.1744-1760</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-df70f5a53eb78163e101961a5590edd66c28429c24e63caa0248ad8b2b888c313</citedby><orcidid>0000-0001-9823-9121 ; 0000-0001-8117-2995 ; 0000-0003-1799-194X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/molbev/msaa043$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32077944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Peng, Changjun</creatorcontrib><creatorcontrib>Ren, Jin-Long</creatorcontrib><creatorcontrib>Deng, Cao</creatorcontrib><creatorcontrib>Jiang, Dechun</creatorcontrib><creatorcontrib>Wang, Jichao</creatorcontrib><creatorcontrib>Qu, Jiangyong</creatorcontrib><creatorcontrib>Chang, Jiang</creatorcontrib><creatorcontrib>Yan, Chaochao</creatorcontrib><creatorcontrib>Jiang, Ke</creatorcontrib><creatorcontrib>Murphy, Robert W</creatorcontrib><creatorcontrib>Wu, Dong-Dong</creatorcontrib><creatorcontrib>Li, Jia-Tang</creatorcontrib><title>The Genome of Shaw’s Sea Snake (Hydrophis curtus) Reveals Secondary Adaptation to Its Marine Environment</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>The transition of terrestrial snakes to marine life ∼10 Ma is ideal for exploring adaptive evolution. Sea snakes possess phenotype specializations including laterally compressed bodies, paddle-shaped tails, valvular nostrils, cutaneous respiration, elongated lungs, and salt glands, yet, knowledge on the genetic underpinnings of the transition remains limited. Herein, we report the first genome of Shaw’s sea snake (Hydrophis curtus) and use it to investigate sea snake secondary marine adaptation. A hybrid assembly strategy obtains a high-quality genome. Gene family analyses date a pulsed coding-gene expansion to ∼20 Ma, and these genes associate strongly with adaptations to marine environments. Analyses of selection pressure and convergent evolution discover the rapid evolution of protein-coding genes, and some convergent features. Additionally, 108 conserved noncoding elements appear to have evolved quickly, and these may underpin the phenotypic changes. Transposon elements may contribute to adaptive specializations by inserting into genomic regions around functionally related coding genes. The integration of genomic and transcriptomic analyses indicates independent origins and different components in sea snake and terrestrial snake venom; the venom gland of the sea snake harbors the highest PLA2 (17.23%) expression in selected elapids and these genes may organize tandemly in the genome. These analyses provide insights into the genetic mechanisms that underlay the secondary adaptation to marine and venom production of this sea snake.</description><subject>Adaptation, Biological</subject><subject>Animals</subject><subject>Aquatic Organisms</subject><subject>DNA Transposable Elements</subject><subject>Evolution, Molecular</subject><subject>Female</subject><subject>Genome</subject><subject>Hydrophiidae - genetics</subject><subject>Molecular Sequence Annotation</subject><subject>Multigene Family</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwjAYxhujEUSvHk2PcADatfvTIyEIJBgTwfPSde_CkLWz3TDc_Bp-PT-JI0Ovnt738Hue5PkhdE_JiBLBxoXZJ3AYF05KwtkF6lKfhUMaUnGJuiRsfk5Y1EE3zu0IoZwHwTXqMI-EoeC8i3abLeA5aFMANhleb-XH9-eXw2uQeK3lG-D-4phaU25zh1Vtq9oN8AscQO5PkDI6lfaIJ6ksK1nlRuPK4GXl8JO0uQY804fcGl2Arm7RVdak4O58e-j1cbaZLoar5_lyOlkNFQtENUyzkGS-9BkkYUQDBpRQEVDp-4JAmgaB8iLuCeVxCJhqZns8kmmUeEkURYpR1kP9tre05r0GV8VF7hTs91KDqV3sMV8w4XucNeioRZU1zlnI4tLmRTMopiQ--Y1bv_HZbxN4OHfXSQHpH_4rtAEGLWDq8r-yH3m7h7o</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Peng, Changjun</creator><creator>Ren, Jin-Long</creator><creator>Deng, Cao</creator><creator>Jiang, Dechun</creator><creator>Wang, Jichao</creator><creator>Qu, Jiangyong</creator><creator>Chang, Jiang</creator><creator>Yan, Chaochao</creator><creator>Jiang, Ke</creator><creator>Murphy, Robert W</creator><creator>Wu, Dong-Dong</creator><creator>Li, Jia-Tang</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9823-9121</orcidid><orcidid>https://orcid.org/0000-0001-8117-2995</orcidid><orcidid>https://orcid.org/0000-0003-1799-194X</orcidid></search><sort><creationdate>20200601</creationdate><title>The Genome of Shaw’s Sea Snake (Hydrophis curtus) Reveals Secondary Adaptation to Its Marine Environment</title><author>Peng, Changjun ; Ren, Jin-Long ; Deng, Cao ; Jiang, Dechun ; Wang, Jichao ; Qu, Jiangyong ; Chang, Jiang ; Yan, Chaochao ; Jiang, Ke ; Murphy, Robert W ; Wu, Dong-Dong ; Li, Jia-Tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-df70f5a53eb78163e101961a5590edd66c28429c24e63caa0248ad8b2b888c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation, Biological</topic><topic>Animals</topic><topic>Aquatic Organisms</topic><topic>DNA Transposable Elements</topic><topic>Evolution, Molecular</topic><topic>Female</topic><topic>Genome</topic><topic>Hydrophiidae - genetics</topic><topic>Molecular Sequence Annotation</topic><topic>Multigene Family</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Changjun</creatorcontrib><creatorcontrib>Ren, Jin-Long</creatorcontrib><creatorcontrib>Deng, Cao</creatorcontrib><creatorcontrib>Jiang, Dechun</creatorcontrib><creatorcontrib>Wang, Jichao</creatorcontrib><creatorcontrib>Qu, Jiangyong</creatorcontrib><creatorcontrib>Chang, Jiang</creatorcontrib><creatorcontrib>Yan, Chaochao</creatorcontrib><creatorcontrib>Jiang, Ke</creatorcontrib><creatorcontrib>Murphy, Robert W</creatorcontrib><creatorcontrib>Wu, Dong-Dong</creatorcontrib><creatorcontrib>Li, Jia-Tang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Changjun</au><au>Ren, Jin-Long</au><au>Deng, Cao</au><au>Jiang, Dechun</au><au>Wang, Jichao</au><au>Qu, Jiangyong</au><au>Chang, Jiang</au><au>Yan, Chaochao</au><au>Jiang, Ke</au><au>Murphy, Robert W</au><au>Wu, Dong-Dong</au><au>Li, Jia-Tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Genome of Shaw’s Sea Snake (Hydrophis curtus) Reveals Secondary Adaptation to Its Marine Environment</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>37</volume><issue>6</issue><spage>1744</spage><epage>1760</epage><pages>1744-1760</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>The transition of terrestrial snakes to marine life ∼10 Ma is ideal for exploring adaptive evolution. Sea snakes possess phenotype specializations including laterally compressed bodies, paddle-shaped tails, valvular nostrils, cutaneous respiration, elongated lungs, and salt glands, yet, knowledge on the genetic underpinnings of the transition remains limited. Herein, we report the first genome of Shaw’s sea snake (Hydrophis curtus) and use it to investigate sea snake secondary marine adaptation. A hybrid assembly strategy obtains a high-quality genome. Gene family analyses date a pulsed coding-gene expansion to ∼20 Ma, and these genes associate strongly with adaptations to marine environments. Analyses of selection pressure and convergent evolution discover the rapid evolution of protein-coding genes, and some convergent features. Additionally, 108 conserved noncoding elements appear to have evolved quickly, and these may underpin the phenotypic changes. Transposon elements may contribute to adaptive specializations by inserting into genomic regions around functionally related coding genes. The integration of genomic and transcriptomic analyses indicates independent origins and different components in sea snake and terrestrial snake venom; the venom gland of the sea snake harbors the highest PLA2 (17.23%) expression in selected elapids and these genes may organize tandemly in the genome. These analyses provide insights into the genetic mechanisms that underlay the secondary adaptation to marine and venom production of this sea snake.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>32077944</pmid><doi>10.1093/molbev/msaa043</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9823-9121</orcidid><orcidid>https://orcid.org/0000-0001-8117-2995</orcidid><orcidid>https://orcid.org/0000-0003-1799-194X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2020-06, Vol.37 (6), p.1744-1760
issn 0737-4038
1537-1719
language eng
recordid cdi_proquest_miscellaneous_2359395243
source Oxford Journals Open Access Collection
subjects Adaptation, Biological
Animals
Aquatic Organisms
DNA Transposable Elements
Evolution, Molecular
Female
Genome
Hydrophiidae - genetics
Molecular Sequence Annotation
Multigene Family
title The Genome of Shaw’s Sea Snake (Hydrophis curtus) Reveals Secondary Adaptation to Its Marine Environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Genome%20of%20Shaw%E2%80%99s%20Sea%20Snake%20(Hydrophis%20curtus)%20Reveals%20Secondary%20Adaptation%20to%20Its%20Marine%20Environment&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Peng,%20Changjun&rft.date=2020-06-01&rft.volume=37&rft.issue=6&rft.spage=1744&rft.epage=1760&rft.pages=1744-1760&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msaa043&rft_dat=%3Cproquest_TOX%3E2359395243%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-df70f5a53eb78163e101961a5590edd66c28429c24e63caa0248ad8b2b888c313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2359395243&rft_id=info:pmid/32077944&rft_oup_id=10.1093/molbev/msaa043&rfr_iscdi=true