Loading…
Structural predication and antigenic analysis of ROP16 protein utilizing immunoinformatics methods in order to identification of a vaccine against Toxoplasma gondii: An in silico approach
Toxoplasmosis, caused by Toxoplasma gondii, is a common parasitic disease, affecting almost one-third of the world's population. Currently, there are no effective treatments for inhibiting the formation of chronic tissue cysts in infected hosts. Thus, the production of appropriate vaccines agai...
Saved in:
Published in: | Microbial pathogenesis 2020-05, Vol.142, p.104079-104079, Article 104079 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Toxoplasmosis, caused by Toxoplasma gondii, is a common parasitic disease, affecting almost one-third of the world's population. Currently, there are no effective treatments for inhibiting the formation of chronic tissue cysts in infected hosts. Thus, the production of appropriate vaccines against this pathogen is an important goal to avoid toxoplasmosis. considering the role of rhoptry antigens like ROP16 in virulence and satisfactory immunogenicity, they can be used as promising vaccine candidates against T. gondii. In the present study, an in silico approach was used to analyze various aspects of the ROP16 protein, including physicochemical characteristics, the potential epitopes of B and T-cells, the secondary and tertiary structure, the subcellular localization, the transmembrane domain, and other important features of this protein using several bioinformatics tools to design a proper vaccine against T. gondii. The results showed that ROP16 protein includes 93 potential post-translational modification sites. The secondary structure of the ROP16 protein comprises 34.23% alpha-helix, 54.46% random coil, and 11.32% extended strand. Moreover, several potential B- and T-cell epitopes were identified for ROP16. Based on the results of Ramachandran plot, 84.64% of the amino acid residues were located in the favored, 10.34% in allowed, and 5.02% in outlier regions. Furthermore, the results of the antigenicity and allergenicity assessment noted that this protein was immunogenic and non-allergenic. Our findings suggested that structural and functional predictions applied to ROP16 protein using in silico tools can reduce the failure risk of the laboratory studies. This research provided an important basis for further studies and also developed an effective vaccine against acute and chronic toxoplasmosis by various strategies. Further studies are needed on the development of vaccines in vivo using ROP16 alone or in combination with other antigens in the future.
•This paper gave a comprehensive definition of the important aspects of ROP16 protein, using several bioinformatics tools.•ROP16, is released from the rhoptries and is considered to be one of the main factors in the pathogenicity of T. gondii.•The outcomes of epitope prediction revealed that ROP16 protein had several excellent B-cells and T-cells epitopes, suggesting that it would be become an outstanding vaccine target.•This research provides an important basis for further in vivo studies. |
---|---|
ISSN: | 0882-4010 1096-1208 |
DOI: | 10.1016/j.micpath.2020.104079 |